Math 131 notes

Jason Riedy

15 September, 2008

Contents

I—Review]

2 Inductive and deductive reasoning]

|3 __Problem solving|

3.1 nderstand the problem| 0000000000

|3.2 DEviSe @ PIall] . . . v v o e e e e e e
B3 Carryout theplan]
3.4 Look back at your solution|

4 Sequences

16 Symbolic logic]
6.1 From truth tables to functionsl

[6.2 De Morgan’s laws and forms of conditionals|

[6.3 Quantifiers]

6.4 Nesting and negating quantifiers|
Notes also available as|PDH

1 Review

Structure of the upcoming test:
e Ten questions. Chose sixz and solve them.
e Thus expect about seven minutes per question.

e Remember to read and answer the entire question.

Closed book, etc. Calculators are fine but not necessary.

U W W W [\

[

(4]

© 0o~

e Bring scratch paper and paper for writing up your results. Separately.

e Answers and explanations need to be indicated clearly.

No questions are intended to be “trick” questions.

Will cover the following topics:

inductive v. deductive reasoning with sequences,

problem solving,

set theory,

symbolic logic.

Remember that solutions for the homework problems are available on-line:
http://jriedy.users.sonic.net/VI/math131-£08/.

2 Inductive and deductive reasoning

Two primary forms of reasoning:

inductive Working from examples and intuiting how to extend them. Inductive
reasoning does not prove anything.

deductive Extending hypotheses with rules to reach a conclusion. Deductive
reasoning generates proofs (even if simple).

An example of inductive reasoning:

It has been sunny all week, so it will be sunny tomorrow.
There are no explicit rules or assumptions. We just assume the pattern continues.
An example of deductive reasoning:

The weather forecasts state that if the storm turns northward, it
will rain tomorrow. The storm has turned northward, so it will rain
tomorrow.

This sets up a rule from the weather forecast. Then the rule is applied to data,
the storm turning northward, to reach a conclusion about tomorrow.

There rarely are clean-cut distinctions. Consider extending the sequence

35,45,55, . ..

Reasoning inductively, we might assume that the numbers jump by ten. The
next number will be 65, then 75, and so on.

http://jriedy.users.sonic.net/VI/math131-f08/

Reasoning deductively, we assume this is an arithmetic sequence starting at 35
with an increment of 10. Under this assumption, the next two numbers will be
35410-3 =65 and 354 10-4 = 75.

The difference between the two forms is subtle. Deductive reasoning sets up
explicit rules. The rules themselves may be discovered inductively, but making
the rules specific and applying them carefully renders the result deductive.

3 Problem solving

Pélya’s principles:
1. Understand the problem.
2. Devise a plan.
3. Carry out the plan.
4. Look back at your solution.

This is not a simple 1-2-3-4 recipe. Understanding the problem may include
playing with little plans, or trying to carry out a plan may lead you back to
trying to understand the problem.

3.1 Understand the problem

e Read the entire problem.
Read the whole problem.
Read all of the problem.

One comment about the homeworks: Most people answer only part of any
given problem.

e Determine what you have and what you want.

To indicate an answer clearly to someone else (like me), you need to know
what the answer is.

e Consider rephrasing the problem, either in English or symbolically.
Rephrasing the problem may help you remember solution methods.
e Try some examples.

This is close to devising a plan. Sometimes you may stumble upon an
answer.

e Look for relationships between the data.

Examples may help find relationships. The relationships may help you
decide on a plan. Mathematics is about relationships between different
entities; symbolic mathematics helps abstract away the entities themselves.

3.2 Devise a plan

Sometimes plans are “trivial,” or so simple it seems pointless to make them
specific. But write it out anyways. Often the act of putting a plan into words
helps find flaws in the plan.

Try to devise a plan that you can check along the way. The earlier you detect a
problem, the easier you can deal with it.

Some plans we’ve considered:
e Guessing and checking.

Try a few combinations of the data. See what falls out. This is good for
finding relationships and understanding the problem.

e Searching using a list.

If you know the answer lies in some range, you can search that range
systematically by building a list.

e Finding patterns.

When trying examples, keep an eye open for patterns. Sometimes the
patterns lead directly to a solution, and sometimes they help to break a
problem into smaller pieces.

e Following dependencies / working backwards.

Be sure to understand what results depend on which data. Look for
dependencies in the problem. Sometimes pushing the data you have
through all the dependencies will break the problem into simpler sub-
problems.

3.3 Carry out the plan

Attention to detail is critial here.

When building a list, be sure to carry out a well-defined procedure. Or when
looking for patterns, be systematic in the examples you try. Don’t jump around
randomly.

3.4 Look back at your solution
Can you check your result? Sometimes trying to check reveals new relationships
that could lead to a better solution.

Think about how your solution could help with other problems.

4 Sequences

A sequence is an ordered list of numbers. Two common kinds are:
arithmetic Adds a constant increment at each step.
geometric Multiplies by a constant at each step.

One method for extending a sequence is through successive differences. Con-
sider the sequence
11 22 39 64

To compute the next term, form differences until you find a constant column:

A, AW =4, -4, AP =AW AL,

.

1 11

2 22 11

3 39 17 6
4 62 23

5 91 29 6

5 Set theory

set An unordered collection of unique elements.

You can write a set by listing its entries, {1,2, 3,4}, or through set builder
notation, {z |z is a positive integer,z < 5}.

empty set The unique set with no elements: {} or). Be sure to know the
relations between the empty set and other sets, and also how the empty
set behaves in operations.

element of You write x € A to state that x is an element of A. The symbol is
not an “E” but is almost a Greek e. Think of a pitchfork.

Note that 1 € {1,2} and {1} € {{1},{2}}, but {1} & {1,2}.

subset Given two sets A and B, A C B if every element of A is also an element
of B. So A C B is equivalent to z € A — x € B.

One implication is that) C A for all sets A. This statement is vacuously
true.

Here {1} C {1,2} and {1} ¢ {{1},{2}}.

superset Given two sets A and B, B D A if every element of A is also an
element of B.

proper subset or superset A subset or superset relation is proper if it im-
plies the sets are not equal. An equivalent symbolic logic statement would
be(x€ A—-ze€B)AN(BxeB:x ¢ A).

Venn diagram A blobby diagram useful for illustrating operations and relations
between two or three sets.

union AUB = {z|z € AV z € B}. The union contains all elements of both
sets.

intersection ANB = {z|x € AAx € B}. The intersection contains only those
elements that exist in both sets.

set difference A\ B = {z|z € AAx ¢ B}. The set difference contains
elements of the first set that are not in the second set. It cannot contain
any elements of the second set.

You can use symbolic logic to write the result of multiple operations.

(ANnB)UC ={z|lz € ANz € B}UC
={z|(r€e ANz eB)VzxeC}l

6 Symbolic logic

logical statement Some clear statement that is either true or false.
Some different ways of writing true or false are acceptable:

true false

T F
1 0
T 1

The test’s questions use 1 and 0.

logical variable A variable standing for some logical statement. Common
variables are p, q, 7.

truth table A systematic listing of all possible input truth values for an ex-
pression.

negation True when the variable is false and false when the variable is true.
Will be written —p.

and True only when all variables are true. Will be written p A q.
or False only when all variables are false. Will be written p V q.
equivalence The logical form of equality. Will be written p = gq.

conditional If p then g. True whenever true implies true or when false implies
anything. Will be written p — q.

tautology A statement that always is true. Will be written =, as in = p V —p.
This is just for emphasis; there is no real difference with (p V —p) = 1.

A truth table defining four operations above:

p ¢ —p pPAqg pVq p—q
1 1 0 1 1 1
1 0 0 0 1 0
0 1 1 0 1 1
0 0 1 0 0 1

Note that —p did not need all four lines. It does not depend on ¢ and has the
same value regardless of whether ¢ is false or true.

6.1 From truth tables to functions

Consider the truth table:

O =3
o= o |
o

We can derive an expression for f(p,q) in two ways. Obviously, any expressions
must simplify to gq.

One method is to work from the true values. You or together and expressions.
There is one and expression per true value. In this case, we have = f(p,q) = (pA
q)V (-pAq). Pulling out the g, this simplifies = f(p,q) = (pV—-q)Ag=1Aqg = q.

The other method is to work from the false values. You and together or
expressions. There is one or expression per false value. Here, = f(p,q) =

(=pV @) A (pVq). Pulling out ¢ again, = f(p,q) = (-pAp)Vg=0Vqg=gq.

6.2 De Morgan’s laws and forms of conditionals

De Morgan’s laws are two very useful methods for negating terms symbolically:

E-(pVq) =-pA-q, and
F-(prg)=-pV -y

As an example, consider negating the conditional. Use the equivalent form
Ep—q=-pVgq. Then
—(p—q)=-(-pVa)

= ~(-p) A g

=pA—gq.
So the negation of a conditional is not a conditional itself.
There are four related forms of conditional:
conditional p — ¢: If you grew up in Alaska, you have seen snow.
inverse —p — —¢: If you did not grow up in Alaska, you have not seen snow.
converse ¢ — p: If you have seen snow, you grew up in Alaska.

contrapositive -¢ — —p: If you have not seen snow, you did not grow up in
Alaska.

Only the contrapositive has the same meaning as the original conditional, so
Ep—q=-q— p.
The converse and inverse are related to each other but are not equivalent
to the original conditional. The inverse is the contrapositive of the converse:
': q—p=-p— q

6.3 Quantifiers

quantifier A statement regarding some or all possible entries of some set.

existential Declares that some entry exists, so dz : z € A states that A
is not empty.

universal Declares some property is true for every value. So Va € A :
x € B is another way of writing A C B.

predicate Or property. A symbolic way of expressing that some property
holds. For example, understands(s, t) may state that student s understands
topic . A less obtuse but still acceptable statement for a simple predicate
is just “sunderstandsgq.”

The translation of phrases from English to quantified symbolic logic can be
tricky.

Almost every student understands all symbolic logic topics.

can translate to
JsVt : —understands(s, t)

because we don’t measure how many but rather that there is or is not one.

6.4 Nesting and negating quantifiers

Nested quantifiers are not operators. Each quantifier applies to the entire
remaining statement. Vs3t states that for every s, there exists a t for that s.
Meanwhile, JtVs states that there exists one single ¢ for every and all s.

Two rules for negating quantifiers:
—Vs : P(s) is the same as 3s : = P(s), and
—3s : P(s) is the same as Vs : = P(s).

So saying “not all” is the same as “there exists one for not”, and saying “there
does not exist” is the same as “for all, not”.

As an example, we negate the statement above,
Almost every student understands all symbolic logic topics.
and its translation

sVt : munderstands(s, t).

The symbolic negation is

—(Js Vt : munderstands(s, t)) = Vs =(Vt : ~understands(s, t))
= Vs 3t : =(—understands(s, t))
= Vs 3t : understands(s, t).
Translating back to English,
All students understand some symbolic logic topic.

It may be true that no two students understand the same topic, but every
student understands some topic.

	Review
	Inductive and deductive reasoning
	Problem solving
	Understand the problem
	Devise a plan
	Carry out the plan
	Look back at your solution

	Sequences
	Set theory
	Symbolic logic
	From truth tables to functions
	De Morgan's laws and forms of conditionals
	Quantifiers
	Nesting and negating quantifiers

