
Math 131 notes

Jason Riedy

22 September, 2008

Contents

1 Positional Numbers 2

2 Converting Between Bases 4
2.1 Converting to Decimal . 4
2.2 Converting from Decimal . 5

3 Operating on Numbers 6
3.1 Multiplication . 6
3.2 Addition . 8
3.3 Subtraction . 8
3.4 Division and Square Root: Later 9

4 Computing with Circuits 9
4.1 Representing Signed Binary Integers 10
4.2 Adding in Binary with Logic . 12
4.3 Building from Adders . 13
4.4 Decimal Arithmetic from Binary Adders 13

5 Homework 15

Notes also available as PDF.

What we will cover from Chapter 4:

• Numbers and digits in different bases, with historical context

• Arithmetic, digit by digit

And additionally, I’ll give a brief summary of computer arithmetic.

1

1 Positional Numbers

A number is a concept and not just a sequence of symbols. We will be discussing
ways to express numbers.

Multiple types of numbers:

nominal A nominal number is just an identifier (or name). In many ways these
are just sequences of symbols.

ordinal An ord inal number denotes order : 1st, 2nd, . . .

Adding ordinal or nominal numbers doesn’t make sense. This brings up a third
type:

cardinal Cardinal numbers count.

The name comes from the cardinality of sets.

Before our current form:

• Piles of rocks don’t work well for merchants.

• Marks on sticks, then marks on papyrus.

Marking numbers is costly. A large number becomes a large number of marks.
Many marks lead to many errors. Merchants don’t like errors. So people started
using symbols rather than plain marks.

An intermediate form, grouping:

• Egyptian: Different symbols for different levels of numbers: units, tens,
hundreds. Grouping within the levels.

• Roman: Symbols for groups, with addition and subtraction of symbols for
smaller groups.

• Greek (and Hebrew and Arabic): Similar, but using all their letters for
many groups.

• Early Chinese: Denote the number of marks in the group with a number
itself. . .

Getting better, but each system still has complex rules. The main problems
are with skipping groups. We now use zero to denote an empty position, but
these systems used varying amounts of space. Obviously, this could lead to trade
disagreements. Once zeros were adopted, many of these systems persisted in
trade for centuries.

Now into forms of positional notation, shorter and more direct:

• Babylonian:

– Two marks, tens and units.

2

– Now the marks are placed by the number of 60s.

– Suffers from complicated rules about zeros.

– (Using 60s persists for keeping time...)

• Mayan:

– Again, two kinds of marks for fives and units.

– Two positional types: by powers of 20, and by powers of 20 except
for one power of 18.

– (Note that 18 · 20 = 360, which is much closer to a year.)

– Essentially equivalent to what we use, but subtraction in Mayan is
much easier to see.

• (many other cultures adopted similar systems (e.g. Chinese rods)

Current: Hindu-Arabic numeral system

The characters differ between cultures, but the idea is the same. The characters
often are similar as well. Originated in the region of India and was carried west
through trade. No one knows when zero was added to the digits. The earliest
firm evidence is in Arab court records regarding a visitor from India and a
description of zero from around 776 AD. The first inscription found with a zero
is from 876 AD in India. However, the Hindu-Arabic system was not adopted
outside mathematics even in these cultures. Merchants kept to a system similar
to the Greek and Hebrew systems using letters for numbers.

Leonardo Fibonacci brought the numerals to Europe in the 13th century (after
1200 AD) by translating an Arabic text to Latin. By 15th century, the nu-
meral system was in wide use in Europe. During the 19th century, this system
supplanted the rod systems in Asia.

The final value of the number is based on the positions of the digits:

1234 = 1 · 103 + 2 · 102 + 3 · 101 + 4 · 100.

We call ten the base. Then numbers becomes polynomials in terms of the base
b,

1234 = b3 + 2 · b2 + 3 · b1 + 4.

Here b = 10.

So we moved from marks, where 1000 would require 1000 marks, to groups,
where 1000 may be a single mark but 999 may require dozens of marks. Then
we moved to positional schemes where the number of symbols depends on the
logarithm of the value; 1000 = 103 requires 4 = 3 + 1 symbols.

After looking at other bases, we will look into operations (multiplication, addition,
etc.) using the base representations.

3

2 Converting Between Bases

Only three bases currently are in wide use: base 10 (decimal), base 2 (binary),
and base 16 (hexadecimal). Occasionally base 8 (octal) is used, but that is
increasingly rare. Other conversions are useful for practice and for seeing some
structure in numbers. The structure will be useful for computing.

Before conversions, we need the digits to use. In base b, numbers are expressed
using digits from 0 to b− 1. When b is past 10, we need to go beyond decimal
numerals:

Value: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Digit: 0 1 2 3 4 5 6 7 8 9 A B C D E F

Upper- and lower-case are common.

So in hexadecimal, DECAFBAD is a perfectly good number, as is DEADBEEF. If
there is a question of what base is being used, the base is denoted by a subscript.
So 1010 is a decimal ten and 102 is in binary.

To find values we recognize more easily, we convert to decimal. Then we will
convert from decimal.

2.1 Converting to Decimal

Converting to decimal using decimal arithmetic is straight-forward. Remember
the expansion of 1234 with base b = 10,

1234 = 1 · 103 + 2 · 102 + 3 · 101 + 4 · 100

= b3 + 2 · b2 + 3 · b1 + 4.

Each digit of DEAD has a value, and these values become the coefficients. Then
we expand the polynomial with b = 16. In a straight-forwart way,

DEAD = D · 163 + E · 162 + A · 161 + D

= 13 · 163 + 14 · 162 + 10 · 16 + 13
= 13 · 4096 + 14 · 256 + 10 · 16 + 13
= 57005.

We an use Horner’s rule to expand the polynomial in a method that often is
faster,

DEAD = ((13 · 16 + 14) · 16 + 10) · 16 + 13
= (222 · 16 + 10) · 16 + 13
= 3562 · 16 + 13
= 57005.

4

Let’s try a binary example. Convert 11012 to decimal:

11012 = (((1 · 2 + 1) · 2 + 0) · 2 + 1
= (3 · 2 + 0) · 2 + 1
= 6 · 2 + 1
= 13.

Remember the rows of a truth table for two variables? Here,

112 = 2 + 1 = 3,

102 = 2 + 0 = 2,

012 = 0 + 1 = 1, and
002 = 0 + 0 = 0.

2.2 Converting from Decimal

To convert to binary from decimal, consider the previous example:

13 = 8 + 5

= 8 + 4 + 1

= 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20

= 11012.

At each step, we find the largest power of two less than the remaining number.
Another example for binary:

293 = 256 + 37

= 256 + 32 + 5

= 256 + 32 + 4 + 1

= 1 · 28 + 1 · 25 + 1 · 22 + 1
= 1001001012.

And in hexadecimal,

293 = 256 + 37

= 1 · 256 + 2 · 16 + 5
= 12516.

You can see why some people start remembering powers of two.

If you have no idea where to start converting, remember the relations blogb x = x
and logb x = log x/ log b. Rounding logb x up to the larger whole number gives
you the number of base b digits in x.

5

The text has another version using remainders. We will return to that in the
next chapter. And conversions to and from binary will be useful when we discuss
how computers manipulate numbers.

3 Operating on Numbers

Once we split a number into digits (decimal or binary), operations can be a bit
easier.

We will cover multiplication, addition, and subtraction both

• to gain familiarity with positional notation, and

• to compute results more quickly and mentally.

Properties of positional notation will help when we explore number theory.

We will use two properties frequently:

• Both multiplication and addition commute (a + b = b + a) and re-
associate (a + b) + c = a + (b + c).

• Multiplication distributes over addition, so a(b + c) = ab + ac.

• Multiplying powers of a common base adds exponents, so ba · bc = ba+c.

3.1 Multiplication

Consider multiplication. I once had to learn multiplication tables for 10, 11, and
12, but these are completely pointless.

Any decimal number multiplied by 10 is simply shifted over by one digit,

123 · 10 = (1 · 102 + 2 · 101 + 3 · 100) · 10

= 1 · 103 + 2 · 102 + 3 · 101

= 1230.

Multiplying by 11 = 1 · 10 + 1 is best accomplished by adding the other number
to itself shifted,

123 · 11 = 123 · (10 + 1) = 1230 + 123 = 1353.

And for 12 = 1 · 10 + 2, you double the number,

123 · 12 = 123 · (10 + 2) = 1230 + 246 = 1476.

Multiplying longer numbers quickly follows the same pattern of shifting and
adding. We can expand 123 · 123 = 123 · (1 · 102 + 2 · 10 + 3) to

6

123
× 123

369
2460

12300

15129

Another method expands the product of numbers as a product of polynomials,
working one term at a time. This is essentially the same but not in tabular form:

123 · 123 = (1 · 102 + 2 · 10 + 3) · (1 · 102 + 2 · 10 + 3)

= (1 · 102 + 2 · 10 + 3) · (1 · 102 + 2 · 10) + (1 · 102 + 2 · 10 + 3) · 3
= (1 · 102 + 2 · 10 + 3) · (1 · 102 + 2 · 10) + (3 · 102 + 6 · 10 + 9)
= . . .

This form splits the sums apart as well; we will cover that next.

Bear in mind that short-term memory is limited to seven to eight pieces of
information. Structure mental arithmetic to keep as few pieces in flight as
possible. One method is to break multiplication into stages. In long form, you can
group the additions. For example, expanding 123·123 = 123·(1·102)+(123·23) =
123 · (1 · 102) + (123 · 2 · 10 + 123 · 3),

123
× 123

369
2460

2829
12300

15129

Assuming a small number uses only one slot in your short-term memory, need
track only where you are in the multiplier, the current sum, the current product,
and the next sum. That leaves three to four pieces of information to use while
adding.

One handy trick for 15% tips: divide by ten, divide that amount by two, and
add the pieces. We can use positional notation to demonstrate how that works,

x · 15% = (x · 15)/100
= ((x · (10 + 5))/100
= ((x · 10) + (x · (10/2)))/100
= x/10 + (x/10)/2

7

3.2 Addition

Digit-by-digit addition uses the commutative and associative properties:

123 + 456 = (1 · 102 + 2 · 10 + 3) + (4 · 102 + 5 · 10 + 6)

= (1 + 4) · 102 + (2 + 5) · 10 + (3 + 6)
= 579.

Naturally, when a digit threatens to roll over ten, it carries to the next digit.
Expanding the positional notation,

123 + 987 = (1 · 102 + 2 · 10 + 3) + (9 · 102 + 8 · 10 + 7)

= (1 + 9) · 102 + (2 + 8) · 10 + (3 + 7)

= 10 · 102 + 10 · 10 + 10.

Because the coefficients are greater than b− 1 = 9, we expand those coefficients.
Commuting and reassociating,

123 + 987 = 10 · 102 + 10 · 10 + 10

= (1 · 10 + 0) · 102 + (1 · 10 + 0) · 10 + (1 · 10 + 0)

= 1 · 103 + 1 · 102 + 1 · 10 + 0
= 1110.

However, when working quickly, or when the addition will be used in another
operation, you do not need to expand the carries immediately. This is called a re-
dundant representation because numbers now have multiple representations.
You can represent 13 as 1 · 10 + 3 or simply as 13.

If you work that way mentally, you need to keep the intermediate results in
memory. So during multiplying, you only need to work out the carries every
three to four digits. . .

3.3 Subtraction

In systems with signed numbers, we know that subtracting a number is the same
as adding its negation: a− b = a + (−b). So we expect the digit-by-digit method
to work with each digit subtracted, and it does. Because −a = −1 · a, we can
distribute the sign over the digits:

456− 123 = (4 · 102 + 5 · 10 + 6)− (1 · 102 + 2 · 10 + 3)

= (4 · 102 + 5 · 10 + 6) + (−(1 · 102 + 2 · 10 + 3))

= (4 · 102 + 5 · 10 + 6) + (−1 · 102 +−2 · 10 +−3)

= (4− 1) · 102 + (5− 2) · 10 + (6− 3)
= 333.

8

As with carrying, borrowing occurs when a digit goes negative:

30− 11 = (3 · 101 + 0)− (1 · 101 + 1)

= (3− 1) · 101 + (0− 1)

= 2 · 101 +−1

= 1 · 101 + (10− 1)

= 1 · 101 + 9
= 19.

Again, you can use a redundant intermediate representation of 2 · 101 − 1 if
you’re continuing to other operations. And if all the digits are negative, you
can factor out −1,

123− 456 = (1 · 102 + 2 · 10 + 3)− (4 · 102 + 5 · 10 + 6)

= (1− 4) · 102 + (2− 5) · 10 + (3− 6)

= (−3) · 102 + (−3) · 10 + (−3)

= −(3 · 102 + 3 · 10 + 3)
= −333.

3.4 Division and Square Root: Later

We will cover these later with number theory.

4 Computing with Circuits

No one can argue that computing devices (computers, calculators, medical
monitors, etc.) are irrelevant to everyday life. Here we lay the groundwork for
how computers compute.

Essentially, computers perform arithmetic on binary numbers. But different
methods of combining the arithmetic operations produce character strings,
sounds, graphics, . . .

While those are courses in themselves, we at least can explain the very lowest
levels of computer arithmetic. Automated computing is in its relative infancy.
People have been building roads, bridges, and vehicles for thousands of years.
Even motors are hundreds of years old. But modern computing is less than a
hundred years old and became wide-spread only 30 years ago. Before the 1970s,
desktop calculators were rare. And before the 1980s, calculators were virtually
unaffordable.

9

Maybe someday we will be able to take safe computing for granted just like
we take safe bridges for granted, but not yet. It’s important at least to have
heard how computing works so you can gain a sense of where limitations are.
Consider an issue like the largest range of numbers you can represent exactly in
a calculator, spreadsheet, or other program. Each may have different limitations
that appear random but certainly are not. Having some sense of how computers
compute lets you explain or (hopefully) anticipate limitations and work around
them.

4.1 Representing Signed Binary Integers

Converting non-negative numbers to binary is straight-forward. Computer
representations work with a limitied number of binary digits, or bits. With
32 bits, any non-negative integer less than 233 = 8589934592 ≈ 109.9 can be
represented exactly. With n bits, all non-negative integers less than 2n+1 can be
represented exactly. For example, the largest two bit number is 112 = 3 < 22 = 4.

Representing both positive and negative numbers, however, presents some design
choices. One can use one of the bits (often the leading bit) as a sign bit.
The number then becomes −1sign bit· the rest of the bits. This reduces the
representable range of n bits to (−(2n), 2n) and requires treating one bit specially
during operations. (The notation (a, b) is an open range, one that does not
include its endpoints.) We need separate operations for a + b and a− b. Also,
we need to cope with +0 and −0.

We can eliminate the need for separate operations and also eliminate the signed
zero.

A representation named one’s complement plays a little trick with arithmetic
to absorb the sign into the number. This allows using addition for subtraction. . .

We start by negating a number if it is negative:

Bits

3 011
2 010
1 001
0 000

-0 111
-1 110
-2 101
-3 100

Adding two n-digit numbers may produce an n + 1-digit result. For example,
112 + 112 = 1102 in binary or 5 + 6 = 11 in decimal. Consider three bit addition:

10

110
+ 10

1000

If we capture the carry bit 1 and feed it back around, then 1102 + 102 7→
0002 + 12 = 12. In one’s complement, this is −1 + 2 = 1 as expected.

So to add two numbers, positive or negative, we just add the one’s complement
representation. To subtract a− b, we negate b and add it to a. We only need
one operation, addition, for addition and subtraction.

But we still have given an entire bit over to the sign. We can do slightly better
with two’s complement. More importantly, we can reduce the system to
having only a single, unsigned zero. Having an unsigned zero is much easier to
handle with multiplication and division.

To represent a negative number in two’s complement, we negate it and add one:

Bits

3 011
2 010
1 001
0 000

-1 111
-2 110
-3 101
-4 111

By not including -0, we have room for one more number. By the two’s complement
method, it happens to fall on the end of the negative scale. Here, n bits represent
all integers in [−2n, 2n). (The notation [a, b] is a closed range including a and
b. Notations using square brackets on one side but not the other are half-open
and include the end-point against the square bracket.)

There are other representations:

• A biased representation adds 2n−1 or 2n−1 − 1 to every number and
then represents the result. This shifts all the negative numbers to be
non-negative. This representation has an explicit sign bit but only a single
zero.

• A base -2 rather than base 2 representation is bizarre, but it works. These
most often are used for redundant representations inside other arithmetic
operations. There are twice as many negative numbers as positive numbers,
no sign bit, and only a single zero.

• Larger bases can be used by grouping bits. This also allows for more
redundant representations. One representation using 1, 0, and -1 for digits
is particularly interesting, but we won’t cover it here.

11

4.2 Adding in Binary with Logic

Above we have reduced addition and subtraction of signed numbers into simple
addition. Here we implement addition in logic and construct the half adder
and full adder circuits.

Consider a truth table for a ∧ b and a⊕ b (exclusive or):

a b a ∧ b a⊕ b a + b

1 1 1 0 102

1 0 0 1 012

0 1 0 1 012

0 0 0 0 002

If we append a column representing the sum of a and b in binary, we see that
the first digit is a ∧ b and the second is a⊕ b!

This is a half adder. The half adder takes two bits as input and produces a
sum bit s = a⊕ b and a carry bit c = a ∧ b.

(drawing)

A full adder takes input bits and a previous carry bit to produce an output
sum and carry. We can add a + b and then (a + b) + cin. Note that only one of
those sums can generate a carry, so or -ing the carry outputs generates the final
output. 1 + 1 + 1 = 3 = 112 < 1002, so the sum’s output cannot require more
than two bits.

So a full adder can be constructed with two half-adders and one extra or-gate
for the carry:

a b cin (a⊕ b)⊕ cin (a ∧ b) ∨ (cin ∧ (a⊕ b))

1 1 1 1 1
1 1 0 1 0
1 0 1 1 0
1 0 0 0 1
0 1 1 1 0
0 1 0 0 1
0 0 1 0 1
0 0 0 0 0

To add two n bit numbers, you start by adding the low-order bits (coefficient in
front of 20) with a half-adder. The sum is output and the carry follows into a
full adder for adding the coefficients of 21. The process continues resulting in an
n-bit sum and a single carry bit.

The carry bit often is ignored, leading to overflow and wrap-around. At a low
level, adding two positive integers each greater than 2n−1 produces a negative
number ! This is terribly handy for some algorithms and detrimental to others.

12

All architectures make the carry bit available for diagnosing overflow, but not
all programming environments let users access that information.

Adding two n-bit numbers requires a minimum of one half-adder and n− 1 full
adders, or 2n− 1 half-adders and n− 1 or gates, or 2n− 1 exclusive-or gates,
2n− 1 and gates, and n− 1 or gates. Because of the dependence on the previous
bit sum’s carry output, it appears that each bit must be computed one at a
time, or serially. There are tricks using redundant representations that allow
computing the result in larger chunks, exposing more parallelism within the
logic gates.

4.3 Building from Adders

Given addition, we could implement multiplication as repeated addition. Remem-
ber the Egyptian algorithm from the text?

The binary representation of the multiplier serves as a mask. Consider multi-
plying the 3-bit numbers 0112 = 3 and 1012 = 5:

011 ·1
011 ·0

011 ·1
01111

At each step, the bits of 1012 determine whether or not a shifted copy of 0112 is
added into the result. We can implement this by shifting and adding serially, or
we can construct a multiplier array out of adders.

Again, there are optimizations related to redundant representations, but ul-
timately most processors dedicate a large amount of their physical size (and
“power budget”) to multiplier arrays.

The problem of overflow becomes very important for multiplication. Because
2n · 2n = 22n, the product of two n-bit numbers may require 2n bits. Most
architectures deliver the result in two n-bit registers (the limited number of
variables a processor has to work with).

4.4 Decimal Arithmetic from Binary Adders

Ok, so we can add, subtract, and multiply numbers in binary. What about
decimal? Alas, we lack the nifty two’s complement tricks in decimal, so all
decimal units need to cope with signs differently. Most use explicit signs and
always convert -0 to 0.

For integers, conversion back and forth can occur exactly as in class. With 32
bits, there are at most d32 · log10 2e = 10 decimal digits. (The notation dxe

13

rounds x to the closest integer k > x.) So software can lop off digits one at a
time, often using the text’s algorithm with remainders.

There are times when you want to work directly with decimal numbers, however.
Some of these are dictated by legal or engineering considerations. For example,
the “cpu” of a hand-held calculator is does not really run software or store many
intermediate results. There, every result is calculated in decimal often using a
representation called BCD for binary coded decimal.

A decimal number is represented digit-by-digit in binary. So 29 = 2 · 10 + 9 =
(102) · 10 + (10012). This is relatively inefficient. The largest two digits 8 and 9
both require four bits, but the rest require only three. So six binary strings are
not used and cannot represent digits. For example, 10102 = 10 > 9, so 10102

will never appear in a correct BCD digit encoding. In BCD, results mostly are
computed digit-by-digit in binary and then manipulated into a correct BCD
encoding.

Using four bits per digit has one major advantage; each decimal digit is a
hexadecimal digit. So the hex number 159416 is interpreted as the decimal 1594.
This also allows a nifty trick for adding two BCD-encoded numbers.

Say we want to add a = 1103 and b = 328. In decimal, a + b = 1431. If we were
to add these directly in hexadecimal, a + b = 142B16. There needs to be some
mechanism for carrying. We can use the six missing code points to force a carry
into the next digit, and then we can compare with the exclusive-or to detect
where carries actually happened.

The procedure starts by adding 6 to each BCD digit as if they were hexadecimal.
So we shift each digit of a to the top of its hex range and use a+666616 = 776916.
Now we compute a sum s1 = (a + 666616) + b = 7A9116. This isn’t the final sum;
if we subtract 6 from every digit, 7A9116 − 666616 = 142B16, we do not obtain a
BCD-encoded number.

We need to subtract 6 only from those digits that did not generate a carry,
7A9116 − 666016 = 143116. This is a correct BCD number and the correct result.
The carries can be detected by comparing (a + 666616) + b with (a + 666616)⊕ b,
the bitwise exclusive or. If the two results differ in the lowest bit per hex digit /
BCD digit, we know there was a carry and we know where to subtract 616.

Alas, there are no particularly nice tricks for multiplication. But if most uses
include adding a list of prices and applying a tax once, it’s not so bad.

Another form that wastes far less space is called millennial encoding. Because
210 = 1024 > 103, ten bits can represent all three decimal digit numbers. This
wastes only 25 encoding points per three decimal digits, as opposed to wasting
six points every for every single decimal digit. Arithmetic operates in binary on
the chunks of ten bits and then manipulates the results.

And there are more encodings, including Tien Chi Chen and Dr. Irving T. Ho’s
Chen-Ho encoding (1975), Mike Cowlishaw’s DPD encoding (densely packed

14

decimal, 2002), and Intel’s BID encoding (binary integer decimal). These
require more complicated coding techniques to explain, but the latter two (DPD
and BID) are now (as of August, 2008) international standards.

5 Homework

Practice is absolutely critical in this class.

Groups are fine, turn in your own work. Homework is due in or before class on
Mondays.

• Section 4.1:

– Problems 35, 36 (the algorithm is in the text, see Section 4.1, Example
4)

• Section 4.2:

– Problems 2, 3, 5, 6, 11, 12

• Section 4.3:

– Problem 2, 7, 8

– Problems 19-22 (the “calculator shortcut” is Horner’s rule)

– Problems 37-40

– Problem 57 (he played at the festival)

• Expressing numbers in positional form:

– Take a familiar incomplete integer, 679 , and express it as a sum
of the digits times powers of ten using variables x0 and x4 for the
digits in the blanks. Simplify to the form of x4 · 104 + x0 · 100 + z,
where z is a single number in positional form (a sequence of digits).
Does 72 divide z? Does 8 divide z? Does 9 divide z? Remember that
72 = 8 · 9. We will use this example again in the next chapter.

• Operations;

– Multiply 47 by each of 3, 13, and 23. Show your work, and work digit-
by-digit. Use either the expanded form (expanding (4·10+7)·(2·10+3)
or the tabular form collapsing the sum every two steps.

– Add 47 to each of 52, 53, and 54. Show your work, and work digit-
by-digit. Show an intermediate redundant representation if there is
one.

– Subtract 19 from each of 7, 19 (not a typo), 20, and 29. Show
your work, and work digit-by-digit. Show an intermediate redundant
representation if there is one.

15

Note that you may email homework. However, I don’t use MicrosoftTM products
(e.g. Word), and software packages are notoriously finicky about translating
mathematics.

If you’re typing it (which I advise just for practice in whatever tools you use),
you likely want to turn in a printout. If you do want to email your submission,
please produce a PDF or PostScript document.

16

	Positional Numbers
	Converting Between Bases
	Converting to Decimal
	Converting from Decimal

	Operating on Numbers
	Multiplication
	Addition
	Subtraction
	Division and Square Root: Later

	Computing with Circuits
	Representing Signed Binary Integers
	Adding in Binary with Logic
	Building from Adders
	Decimal Arithmetic from Binary Adders

	Homework

