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1 Notes on received homeworks

• The goal of homeworks is practice on the topics covered in the text and in
class. If you’re unsure how to tackle one problem, look at the problems
nearby or at examples. One may be more clear to you and help you with
the assigned problem.

• I have office hours now. Monday and Wednesday 1.30pm to 2.30pm (or
possibly later) in the Math Lab down the hall.

• Be sure to read the entire problem. Many submissions contained only
partial answers even when it was clear you understood the mechanism.

• With problems involving large numbers, expect most calculators and
computer software to break. Try to check results using properties of the
input numbers. For example the product of two numbers with units digit
1 also has units digit 1. Or that the product of two d digit numbers has
either 2d or 2d− 1 digits. (Think about long-hand multiplication to find
these and other properties.)

• If there are questions about which problems were assigned or what the
problem is asking, contact me even if it’s the night before the homework is
due! I may not respond instantly, but it’s worth a shot.

• Because there was apparent confusion over which problems were assigned,
I will start providing the homework on a separate page as well as directly
in the notes.

• In general, writing out steps cushions the blow if the result is incorrect.
And writing out reasons helps even more. If your homework must be late,
reasoning in your own style and words shows you did not just copy solutions.
This class is as much about the method of thinking and communicating as
it is about the final results!
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• Remember that homework is one 20% chunk. But there will be 14 or 15
assignments. Each is at most . . . And if there are 10-20 problems per
assignment, then each assignment is at most. . . This is another reason why
homeworks are frequent. The impact of each assignment is a little less
when there are many.

2 Exercises for Section 1.1

2.1 Even problems, 2-12

2 Deductive. The “if-then” rule about medicine is a premise that is immediately
applied.

4 Inductive. The three children are examples, but there is no rule dictating
birth gender.

6 Deductive. An “if-then” rule is given and applied.

8 Deductive. The rule is implicit, but the conclusion is derived from data and
rules rather than repeated examples.

10 Inductive. Only repeated observations are used to justify the conclusion.

12 Inductive. Again, only observations enter into the reasoning.

3 Explain the “trick” of Section 1.1’s example

A list of numbers as in Section 1.1 (2, 9, 16, 23, 30) does not mean anything on
its own. The context before this example implies that one should look for an
arithmetic relationship.

The “trick” is that a premise is withheld. As in poorly written mystery novels,
crucial information is not available.

All reasoning is based on premises (hypotheses, suppositions, etc.) wether implicit
or explicit. “Trick” questions like Section 1.1’s example rely on misleading you
into using an incorrect implicit premise.
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4 Exercises for Section 1.2

4.1 Problems 2, 9, and 10

4.1.1 Problem 2

3
14 11
31 17 6
54 23 6
83 29 6

118 35 6
159 41 6

4.1.2 Problem 9

The formula provided in the text is of order 4, or in other words the highest
power of the argument n is n4. (Another phrase for this is that the formula is
quartic.) We expect to need 4 columns to the right of the original sequence (1,
2, 4, 8, 16, 31) to reach an arithmetic sequence.

points regions ∆(1) ∆(2) ∆(3) ∆(4)

1 1
2 2 1
3 4 2 1
4 8 4 2 1
5 16 8 4 2 1
6 31 15 7 3 1
7 57 26 11 4 1
8 99 42 16 5 1

The formula provided is

R(n) =
1
24
(
n4 − 6n3 + 23n2 − 18n + 24

)
.

One can compute this directly with any method to verify that the answer is 99.

One convenient way to rewrite a polynomial for evaluation is Horner’s rule.
Horner’s rule applies the distributive property of multiplication over addition to
pull factors of n out of subexpressions. This rule not only is faster when using a
calculator, it also incurs fewer rounding errors when n is not an integer.
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Applying Horner’s rule,

R(n) =
1
24

((n3 − 6n2 + 23n− 18)n + 24)

R(n) =
1
24

(((n2 − 6n + 23)n− 18)n + 24)

R(n) =
1
24

((((n− 6)n + 23)n− 18)n + 24)

Subsituting 8 we find that

R(8) =
1
24

((((8− 6) · 8 + 23) · 8− 18) · 8 + 24)

=
1
24

(((2 · 8 + 23) · 8− 18) · 8 + 24)

=
1
24

((39 · 8− 18) · 8 + 24)

=
1
24

(294 · 8 + 24)

=
1
24

(2376).

Dividing directly again verifies the result is 99, but a technique to avoid the
division is recognizing that 2376 = 2400− 24. Then

R(8) =
1
24

(2376) =
1
24

(2400− 24) = 100− 1 = 99.

4.1.3 Problem 10

The problem is of order 2 (or is quadratic), so we expect two columns beyond
the initial sequence.

n n2 + 3n + 1 = (n + 3)n + 1 ∆(1) ∆(2)

1 5
2 11 6
3 19 8 2
4 29 10 2
5 41 12 2

Substituting 5 into (n + 3)n + 1 produces (5 + 3) · 5 + 1 = 8 · 5 + 1 = 41, verifying
the result.

4.2 Problems 14 and 16

4.2.1 Problem 14

There are two reasonable ways to extend the left pattern. Either is reasonable,
and both demonstrate the same property.
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The first prepends 10 to each number on the left. The resulting pattern is

101× 101 = 10 201,

10 101× 10 101 = 102 030 201, and
1 010 101× 1 010 101 = 1 020 304 030 201.

The second possiblity “reflects” the number across the leading or trailing 1. The
resulting pattern is

101× 101 = 10 201,

10 101× 10 101 = 102 030 201, and
101 010 101× 101 010 101 = 10 203 040 504 030 201.

The common property is that squaring a number with alternating 1 and 0 digits

With these short sequences, the zeros only serve to make the pattern more
obvious. Note that 112 = 121 and 1112 = 12 321. This pattern will break after
the central digit is 9. Why?

Note that computing 101 010 1012 with common desktop computers may produce
10 203 040 504 030 200. The last digit falls off the end of how computers represent
floating-point numbers. Computing in integers on “32-bit” computers may
produce 28 if the calculation wraps around the 32-bit boundary.

This is one reason why looking for patterns and developing a number sense is
important. Errors in calculated results depend on the method used for calculation.
Most programs or devices do not explain their methods, so recognizing patterns
and other properties are important to prevent being misled.

4.2.2 Problem 16

The next line could well be

1 + 2 + 3 + 4 + 5 + 4 + 3 + 2 + 1 = 52.

One method for verifying the result is simple calculation.
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Another is to rearrange the problem slightly to show the pattern

1 = (
1∑

i=1

i) + (
1−1∑
i=1

i) = 12,

1 + 2 + 1 = (
2∑

i=1

i) + (
2−1∑
i=1

i) = 22,

1 + 2 + 3 + 2 + 1 = (
3∑

i=1

i) + (
3−1∑
i=1

i) = 32, and

1 + 2 + 3 + 4 + 3 + 2 + 1 = (
4∑

i=1

i) + (
4−1∑
i=1

i) = 42.

Using the formula
∑n

i=1 i = n(n + 1)/2, the nth middle form is

n(n + 1)
2

+
(n− 1)n

2
=

n2 + n + n2 − n

2
= n2.

So the fifth term is indeed 52.

4.3 Problems 29 and 30

4.3.1 Problem 29

There are two clear ways to extend the formula S(n) = n(n+ 1)/2 into a formula
for the sum 2 + 4 + 6 + · · ·+ 2n.

One is to recognize that 2 + 4 + 6 + · · ·+ 2n = 2(1 + 2 + 3 + · · ·+ n) = 2S(n) =
n(n + 1). Rephrasing the original problem using summation notation, we have
used

∑n
i=1 2i = 2

∑n
i=1 i = n(n + 1).

Another is to consider the sum 2+4+6+· · ·+2n = (1+1)+(2+2)+(3+3)+· · ·+
(n+n) = (1+2+3+· · ·+n)+(1+2+3+· · ·+n) = S(n)+S(n) = 2S(n) = n(n+1).
In summation notation,

∑n
i=1 2i =

∑n
i=1(i+ i) = (

∑n
i=1 i)+(

∑n
i=1 i) = n(n+1).

4.3.2 Problem 30

This problem is about phrasing mathematical problems in a way that respects
the order of operations.

Some possibilities are the following:

• The square of the sum of the integers from 1 to n equals the sum of the
cubes of those same numbers.
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• The square of the sum of the first n whole numbers is the sum of their
cubes.

• Squaring the sum of the integers from 1 to n is the same as summing their
cubes.

The key is that on the left a sum is squared, while on the right cubes are added.

4.4 Problems 32, 39, and 51

This sequence of problems demonstrates similar points in different ways. They
are all related to each other and to Problem 16.

4.4.1 Problem 32

Each column (or row) of the blocked triangles represents the integers 1, 2, 3,
and 4 by the number of blocks in the column (or row). The total number of
blocks in each triangle is 1+2+3+4.

When flipped and combined, the total number blocks is the sum of the two
triangles, or 2 · (1 + 2 + 3 + 4). The combined figure is a rectangle consisting of
4 · 5 blocks. So 2(1 + 2 + 3 + 4) = 4 · 5, or 1 + 2 + 3 + 4 = (4 · 5)/2.

A better diagram would replace the left-most arrow with an addition operator
(+).

4.4.2 Problem 39

Drawing out the dots demonstrates the solution directly.

Or use the result of Problem 16. Note that the first sum,
∑n

i=1 i, is the nth

triangular number and that the second sum,
∑n−1

i=1 i, is the (n− 1)th triangular
number. Thus Problem 16 demonstrated that the sum of two consecutive
triangular numbers is a square.

4.4.3 Problem 51

Either draw a few consecutive figures from Problem 39 or use Problem 16.

4.5 Problem 49

The first pattern to observe is they are all of the form p(n)/2, where p(n) is some
polynomial of n. The next pattern is that the numerator p(n) = n(a · n− b) for
integers a and b. Then both a and b increase by one when adding a side.
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Using these patterns, the nth nonagonal number is

N(n) =
n(7n− 5)

2
.

Substituting 6, N(6) = 6(7 · 6− 5)/2 = 3(42− 5) = 111, adding more evidence
to the conjecture.

4.6 Problems 51 and 54

4.6.1 Problem 51

Oops. I think meant to give Problem 52 rather than repeat Problem 51, but that’s
my fault.

4.6.2 Problem 54

Filling in a few values,

n T (n− 1) 3T (n− 1) + n
2 1 5
3 3 12
4 6 22
5 10 35

The first, 5, suggests the five-sided pentagon that produces the second pentagonal
number. Later numbers add additional evidence.

One could prove the relationship by expanding 3T (n− 1) + n and simplifying
the expression, or

3T (n− 1) + n = 3
(

(n− 1)(n− 1 + 1)
2

)
+ n

=
3n2 − 3n

2
+ n

=
3n2 − 3n + 2n

2

=
3n2 − n

2

=
n(3n− 1)

2
= P (n).
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