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1 Section 1.4, problem 54

According to the percentages, Primestar has 16% of 12 million or 1.92 million. C-
Band then has 15% or 1.8 million. Primestar has 120 thousand more subscribers.

However, the slices appear of drastically different sizes. I suspect the satellite
dish is tilted “upwards” like a real dish, distorting the slices’ areas.

2 Section 2.1

2.1 Problems 1-8

1. C

2. G

3. E

4. A

5. None of the above! They meant B, but 1 = 20 is a positive integer and a
power of two. The authors meant “two raised to the power of each of the
five least positive integers”. I hadn’t realized this at first, or else I would
not have given this one.

6. D

7. H

8. F
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2.2 Problems 11 and 17

11. {0, 1, 2, 3, 4}
17. {2, 4, 8, 16, 32, 64, 128, 256}

2.3 Problems 30 and 32

30. {x|x is an even natural number} is a direct translation, but {2x|x ∈ J+} is
shorter. Another possibility is {x|x > 0, x is an even integer}.
32. One form is {35 + 5i|i ∈ J, 0 ≤ i ≤ 12}.

2.4 Problems 62, 63, and 66

62. −12 /∈ {3, 8, 12, 18}.
63. 0 ∈ {−2, 0, 5, 9}.
66. {6} /∈ {3, 4, 5, 6, 7}. But note that {6} ⊂ {3, 4, 5, 6, 7}.

2.5 Problems 68, 71, 74, and 78

68. false
71. true
74. true
78. true (assuming a typical meaning for “. . .”)

2.6 Problem 92

Part a. Three chocolate bars are contain a total of 660 calories. The point of
this exercise is to ensure you recognize that sets are unordered, so {r, s} = {s, r}
and you only include it once. The list is as follows: {r}, {r, s}, {r, c}, {r, g},
{r, v}, {s, c}, and {s, g}.

Part b. Five bars is 1100 calories. The list is {r, s, v}, {r, s, g}, {r, s, c}, {r, c, v},
{r, c, g}, and {r, g, v}.

3 Section 2.2

3.1 Problems 8, 10, 12, 14

8. {M, W, F} 6⊂ {S, M, T, W, Th}.
10. {a, n, d} ⊂ {r, a, n, d, y}.
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12. ∅ ⊂ ∅.
14. {2, 1/3, 5/9} ⊂ Q.

3.2 Even problems 24-34

24. true
26. false
28. false
30. true
32. false
34. false

4 Section 2.3

4.1 Problems 1-6

1. B

2. F

3. A

4. C

5. E

6. D

4.2 Problems 10, 17, 18, 23, 24

10. Y ∩ Z = {b, c}.
17. X ∪ (Y ∩ Z) = {a, b, c, e, g}.
18. Y ∩ (X ∪ Z) = {a, b, c} = Y because Y ⊂ X ∪ Z.
23. X \ Y = {e, g}.
24. Y \X = {b}.

4.3 Problem 31

The set consisting of all the elements of A along with those elements of C that
are not in B.
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4.4 Problem 33

The set consisting of elements in A but not in C as well as elements in B but
not in C. If we consider the union of A, B, and C to be the universal set, then
this is the set of all elements in A complement along with all elements in B
complement.

4.5 Problems 61, 62

61. X ∪ ∅ = X, and the conjecture is that the union of any set with the empty
set is the set itself.
62. X ∩ ∅ = ∅, and the conjecture is that the intersection of any set with the
empty set is the empty set.

4.6 Problems 72, 73

72. A×B = {(3, 6), (3, 8), (6, 6), (6, 8), (9, 6), (9, 8), (12, 6), (12, 8)}
B ×A = {(6, 3), (8, 3), (6, 6), (8, 6), (6, 9), (8, 9), (6, 12), (8, 12)}
73. A×B = {(d, p), (d, i), (d, g), (o, p), (o, i), (o, g), (g, p), (g, i), (g, g)}.
B×A = {(p, d), (i, d), (g, d), (p, o), (i, o), (g, o), (p, g), (i, g), (g, g)}, alas, no pigdog
in sight.

4.7 Problems 117, 118, 121-124

117. A \B = A implies that A ∩B = ∅.
118. B \A = A is true only when B = A = ∅.
121. If A ∪ ∅ = ∅, then A = ∅.
122. A ∩ ∅ = ∅ for any set A.
123. If A ∩ ∅ = A, then A = ∅.
124. A ∪ ∅ = A for all sets A.
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