Solutions for the third week's homework Math 131

Jason Riedy

8 September, 2008

Also available as PDF.

1 Section 1.4, problem 54

According to the percentages, Primestar has 16% of 12 million or 1.92 million. C-Band then has 15% or 1.8 million. Primestar has 120 thousand more subscribers.

However, the slices appear of drastically different sizes. I suspect the satellite dish is tilted "upwards" like a real dish, distorting the slices' areas.

2 Section 2.1

2.1 Problems 1-8

- 1. C
- 2. G
- 3. E
- 4. A
- 5. None of the above! They meant B, but $1 = 2^0$ is a positive integer and a power of two. The authors meant "two raised to the power of each of the five least positive integers". I hadn't realized this at first, or else I would not have given this one.
- 6. D
- $7.~\mathrm{H}$
- 8. F

2.2 Problems 11 and 17

11. {0, 1, 2, 3, 4} **17.** {2, 4, 8, 16, 32, 64, 128, 256}

2.3 Problems 30 and 32

30. $\{x|x \text{ is an even natural number}\}$ is a direct translation, but $\{2x|x \in \mathbb{J}^+\}$ is shorter. Another possibility is $\{x|x > 0, x \text{ is an even integer}\}$. **32.** One form is $\{35 + 5i|i \in \mathbb{J}, 0 \le i \le 12\}$.

2.4 Problems 62, 63, and 66

62. $-12 \notin \{3, 8, 12, 18\}$. **63.** $0 \in \{-2, 0, 5, 9\}$. **66.** $\{6\} \notin \{3, 4, 5, 6, 7\}$. But note that $\{6\} \subset \{3, 4, 5, 6, 7\}$.

2.5 Problems 68, 71, 74, and 78

68. false

71. true

74. true

78. true (assuming a typical meaning for "...")

2.6 Problem 92

Part a. Three chocolate bars are contain a total of 660 calories. The point of this exercise is to ensure you recognize that sets are unordered, so $\{r, s\} = \{s, r\}$ and you only include it once. The list is as follows: $\{r\}, \{r, s\}, \{r, c\}, \{r, g\}, \{r, v\}, \{s, c\}, and \{s, g\}.$

Part b. Five bars is 1100 calories. The list is $\{r, s, v\}$, $\{r, s, g\}$, $\{r, s, c\}$, $\{r, c, v\}$, $\{r, c, g\}$, and $\{r, g, v\}$.

3 Section 2.2

3.1 Problems 8, 10, 12, 14

8. $\{M, W, F\} \not\subset \{S, M, T, W, Th\}.$ **10.** $\{a, n, d\} \subset \{r, a, n, d, y\}.$ **12.** $\emptyset \subset \emptyset$. **14.** $\{2, 1/3, 5/9\} \subset \mathbb{Q}$.

3.2 Even problems 24-34

24. true

- **26.** false
- **28.** false
- **30.** true **32.** false
- **34.** false
- **54.** laise

4 Section 2.3

4.1 **Problems 1-6**

- B
 F
 A
 A
 C
 E
 E
- 6. D

4.2 Problems 10, 17, 18, 23, 24

10. $Y \cap Z = \{b, c\}$. **17.** $X \cup (Y \cap Z) = \{a, b, c, e, g\}$. **18.** $Y \cap (X \cup Z) = \{a, b, c\} = Y$ because $Y \subset X \cup Z$. **23.** $X \setminus Y = \{e, g\}$. **24.** $Y \setminus X = \{b\}$.

4.3 Problem 31

The set consisting of all the elements of A along with those elements of C that are not in B.

4.4 Problem 33

The set consisting of elements in A but not in C as well as elements in B but not in C. If we consider the union of A, B, and C to be the universal set, then this is the set of all elements in A complement along with all elements in B complement.

4.5 Problems 61, 62

61. $X \cup \emptyset = X$, and the conjecture is that the union of any set with the empty set is the set itself.

62. $X \cap \emptyset = \emptyset$, and the conjecture is that the intersection of any set with the empty set is the empty set.

4.6 Problems 72, 73

72. $A \times B = \{(3, 6), (3, 8), (6, 6), (6, 8), (9, 6), (9, 8), (12, 6), (12, 8)\}$ $B \times A = \{(6, 3), (8, 3), (6, 6), (8, 6), (6, 9), (8, 9), (6, 12), (8, 12)\}$ **73.** $A \times B = \{(d, p), (d, i), (d, g), (o, p), (o, i), (o, g), (g, p), (g, i), (g, g)\}.$ $B \times A = \{(p, d), (i, d), (g, d), (p, o), (i, o), (g, o), (p, g), (i, g), (g, g)\},$ alas, no pigdog in sight.

4.7 Problems 117, 118, 121-124

117. $A \setminus B = A$ implies that $A \cap B = \emptyset$. **118.** $B \setminus A = A$ is true only when $B = A = \emptyset$. **121.** If $A \cup \emptyset = \emptyset$, then $A = \emptyset$. **122.** $A \cap \emptyset = \emptyset$ for any set A. **123.** If $A \cap \emptyset = A$, then $A = \emptyset$. **124.** $A \cup \emptyset = A$ for all sets A.