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Chapter 1

Syllabus

1.1 Discrete Mathematics I

Initial home page: http://jriedy.users.sonic.net/VI/math131-f08/

Meets MWF 10.00am-10.50am in room 210 on the second floor of the J. F. Hicks
Memorial Library.

The original syllabus is available, and notes will be posted as available.

Homework problems are posted in each session’s notes.

1.2 Goals

• Gain fluency in and practice with the language that is mathematics.

• Apply mathematical reasoning to historical and modern problems.

• Explore problem solving skills within the realm of discrete mathematics.

1.3 Instructor: Jason Riedy

• email: Jason Riedy <jason@acm.org>

• instant messages (sometimes): jason.riedy@gmail.com

• office hours: MW 1.30pm-2.30pm in the Math Lab (see Section 47 below)
or by appointment. Or you may find me many afternoons at Java J’s in
Bristol or Zazzy’z in Abingdon.

15
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1.4 Text

Miller, Charles D.; Heeren, Vern E.; Hornsby, John; and Morrow, Margaret L.
Mathematical Ideas, tenth edition. Addison Wesley, 2003. ISBN 0-321-16808-9

1.5 Grading

Standard 10-point scale, 3 points on either side for -/+ grades.

The homework is 20%, three mid-term exams are 20% each, and the final counts
for 40%. This adds to 120%; the final counts as two 20% scores, and the lowest
20% score is dropped.

1.6 On homework

Some problems will be given in every class. The week’s problems will be collected
on the following Monday.

Mathematics is a social endeavour. Groups are encouraged, but everyone must
turn in their own work. At some point, you will be asked to present a homework
problem and its solution to the class.

Also, there may be solutions available for problems. But try tackling the problem
yourself (or with your group) first. Practice is important.

Write out sentences and not sequences of expressions. Explain your approaches.
This class is as much about the reasoning process as the results.

1.7 Submitting homework

Groups are fine, turn in your own work. Homework is due in or before class on
Mondays.

Note that you may email homework. However, I don’t use MicrosoftTM products
(e.g. Word), and software packages are notoriously finicky about translating
mathematics.

If you’re typing it (which I advise just for practice in whatever tools you use),
you likely want to turn in a printout. If you do want to email your submission,
please produce a PDF or PostScript document.

http://librarything.com/isbn/0-321-16808-9


Chapter 2

Syllabus schedule

Chapters 1, 2, and 3 Scheduled for 18 August through 17 September. View
the abstract sections as a chance to practice problem solving techniques.
We will find applications shortly. Roughly two weeks on the first chapter,
then one week each on chapters 2 and 3.

First exam Scheduled for 19 September.

Chapters 4, 5, and 6 Scheduled for 22 September through 29 October.

Second exam Scheduled for 31 October.

Chapters 7 and 8 Scheduled for 3 November through 26 November.

Third exam Scheduled for 28 November.

Review Scheduled for 1 and 3 December.

Final exam Official time: Wednesday, 10 December from 10.30am until 12.30pm.

17
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Part II

Notes for chapters 1, 2, and
3

19





Chapter 3

Notes for 18 August

Notes also available as PDF.

3.1 Syllabus and class mechanics

The original syllabus is available.

3.2 Introductions

• My background

• Majors in class

3.3 Inductive and deductive reasoning

Inductive making an “educated” guess from prior observations.

Deductive if premises are satisfied, conclusion follows.

History:

• Old example: Egyptian papyri (1900bc-1800bc)

• Arithmetic table, list of worked problems, used as a text.

• Solve “new” problems by finding similar ones and imitating them.

• Continued through to Greek times (Euclid’s Elements, 300bc)

– Geometry replaced explicit counting.

21



22 CHAPTER 3. NOTES FOR 18 AUGUST

• Even then, no algebra and little abstraction.

• Algebra:

– 500bc for babylonians!

– 200ad for greeks (Diophantus of Alexandria)

– Spread widely from Persians, Muhammad ibn Mūsā al-khwārizmı̄ in
820ad.

∗ (non-translation of his book’s title gave “algebra”, his name gives
“algorithm”)

Mathematics is a combination of both forms of reasoning in no particular order.

Problems to find inductive

Problems to prove deductive

Finding a proof both!

3.4 Inductive

1 + 2 + 3 = 6 = 3 * 4 / 2
1 + 2 + 3 + 4 = 10 = 4 * 5 / 2
... + 5 = 15 = 5 * 6 / 2

So what is the sum of the first 50?

50 ∗ 51/2 = 25 ∗ 51 = 25(25 · 1) + 250(50 · 5) + 1000(50 · 20) = 1275

Integer sequence superseeker from AT&T gives 250 results matching (3, 10, 15).
Some of the sequences are built similarly.

[ NOTE Text uses “probable”. Don’t do that. There’s no probability distribu-
tion defined over the choices, so no one choice is more “probable”.]

Only takes a single counterexample to ruin a perfectly wrong theory.

Must be very careful and define what we mean and want. These are the
hypotheses or premises.

What is the premise above?

Could we use an extreme case to check possibilites? (What is the sum of 1?)

http://www.research.att.com/~njas/sequences/
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3.5 Deductive

Start with a collection of premises and combine them to reach a result. Note:
the rules for combining these also are premises!

Knowing to distinguish a “general principle” from a hypothesis takes time and
perspective. That’s part of what we’re covering, but don’t worry much about it
now.

Typical patterns:

• if {premise} then {conclusion}

• {premises} therefore. . . or hence. . .

Used before algebra (Greek geometry), but algebra really helps.

S = 1 + 2 + 3 + . . . + n (Note use of ellipsis)
S = n+ (n− 1) + (n− 2) + . . . + 1 (Reversed, the sum is the same)

(add the two)
2S = (n+ 1) + (n+ 1) + (n+ 1) + . . . + (n+ 1) = n(n+ 1)
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Chapter 4

Notes for 20 August

Notes also available as PDF.

4.1 Review: Inductive and deductive reasoning

Inductive making an “educated” guess from prior observations.

Deductive if premises are satisfied, conclusion follows.

Mathematics is a combination of both forms of reasoning in no particular order.

• Problems to find: inductive

• Problems to prove: deductive

• Finding a proof. . . both!

Recall examples:

• Example of inductive reasoning: Extending a sequence from examples.

• Example of deductive reasoning: Deriving a rule for computing a sequence.

Always take care with your premises. Be sure you understand the frame-
work before exploring with guesses.

4.2 Inductive reasoning on sequences

Purpose: Define some terminology. See how different sequences grow.

Sequence list of numbers

Term one of the numbers in a list

25



26 CHAPTER 4. NOTES FOR 20 AUGUST

Examples:

• 3, 5, 7, 9, 11, . . .

• 4, 12, 36, 108, . . .

(Elipsis is three dots and is not followed by a comma. Text’s use is incorrect
on page 10.)

Two common types of sequences:

Arithmetic Defined by an initial number and a constant increment.

Geometric Defined by an initial number and a constant multiple.

In our examples:

• 3, 5, 7, 9, 11, . . . : Arithmetic, starts with 3, incremented by 2.

• 4, 12, 36, 108, . . . : Geometric, starts with 4, multiplied by 3.

On growth:

• Note how the arithmetic sequence’s growth is “smooth”, linear.

• The geometric sequence grows much more quickly, exponential.

4.3 A tool for sequences: successive differences

Technique is useful for finding an arithmetic sequence buried in a more compli-
cated appearing sequence of numbers.

This is an example of reducing to a known, simpler problem. We will explore
this and other general problem solving methods shortly.

Simple example with an arithmetic sequence:
3
5 2
7 2
9 2

11 2

Note that the last column provides the increment.

Another example, not directly arithmetic:
2
6 4

22 16 12
56 34 18 6

114 58 24 6

The third column is an arithmetic sequence.
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To obtain the next term, fill in the table from the right:
2
6 4

22 16 12
56 34 18 6

114 58 24 6
202 88 30 6

4.4 Successive differences are not useful for ev-
erything.

What if we apply this to the geometric sequence above?

4 Completing the
12 8 table is
36 24 16 not necessary.

108 72 48 Look at the
324 216 144 growth
972 648 432

• Note that each successive column grows just as quickly as the first.

• Divide the first column by 4, second by 8, etc., and what happens? The
columns are the same.

• Successive differences of a geometric sequence still are geometric sequences.

4.5 An application where successive differences
work, amazingly.

• Will return to the “number patterns” examples in the future.

• Skipping to the “figurate numbers” as another example of successive
differences.

• Also to define common terminology.

For the terminology, consider the following table header from the context of
sequences:
n Tn Sn

• In general, n in mathematics is an integer that counts something.

• Here, the term (individual number) within a sequence (list of numbers).
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• n = 1 is the first term, n = 2 the second, etc.

• A sequence often is named with a letter. Here T and S for triangular and
square. Will explain the names in a moment.

• A particular term n in sequence T is Tn.

To explain the names, start with two points. Draw triangles off of one, squares
off the other. Fill in the following table:
n Tn Sn

1 1 1
2 3 4
3 6 9
4 10 16
5 15 25

The text provides formula. Plug in n, get a number. Or apply successive
differences:
n Sn ∆(1)

n = Sn − Sn−1 ∆(2) = ∆(1)
n −∆(1)

n−1

1 1
2 4 3
3 9 5 2
4 16 7 2
5 25 9 2

Terminology notes: A superscript with parenthesis often indicates a step in a
process. Here it’s the depth of the difference. And ∆ (Greek D, “delta”) is a
traditional letter for differences.

4.6 Next time: Problem solving techniques.

4.7 Homework

Practice is absolutely critical in this class.

Groups are fine, turn in your own work. Homework is due in or before class on
Mondays.

• Exercises for Section 1.1:

– Even problems 2-12. One short sentence of your own declaring why
you decide the reasoning is inductive or deductive. Feel free to scoff
where appropriate.

• Explain why the Section 1.1’s example of “2, 9, 16, 23, 30” is a trick
question.
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• Exercises for Section 1.2:

– Problems 2, 9, and 10.

– Problems 14 and 16.

– Problems 29 (appropriate formula is above problem 21), and 30.

– Problems 32, 39, and 51.

Note that you may email homework. However, I don’t use MicrosoftTM products
(e.g. Word), and software packages are notoriously finicky about translating
mathematics.

If you’re typing it (which I advise just for practice in whatever tools you use),
you likely want to turn in a printout. If you do want to email your submission,
please produce a PDF or PostScript document.
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Chapter 5

Notes for 22 August

Notes also available as PDF.

5.1 The problem solving section is important
enough for a full class

• Will dive in on Monday; today is partially review and constructing a bridge
to formulas.

• Please read it and look back at the problems we have been solving.

• Think about how the principles apply.

• They may help with the homework.

5.2 Review successive differences: a tool for in-
ductive reasoning on sequences

• Problems to find often use inductive reasoning.

• Always take care with your premises. Be sure you understand the
framework before exploring with guesses.

Accumulated terminology:

Inductive making an “educated” guess from prior observations.

Sequence list of numbers

31
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Term one of the numbers in a list (in the context of sequences, often used for
similar concepts in other contexts)

Arithmetic Sequence defined by an initial number and a constant increment.

Geometric Sequence defined by an initial number and a constant multiple.

• Successive differences to reduce a polynomial sequence to an arithmetic
one.

• The last column provides the increment.

• To obtain the next term, fill in the table from the right.

• Not useful for geometric sequences; they remain geometric.

Example, text’s problem 4 (not assigned):

n An ∆(1)
n = An −An−1 ∆(2)

n = ∆(1)
n −∆(1)

n−1 ∆(3)
n

1 1
2 11 10
3 35 24 14
4 79 44 20 6
5 149 70 26 6
6 251 102 32 6
7 391 140 38 6

5.3 Moving from a table to a formula

Some people work better with formulas. The following is not in the text that I
can see; this material is extra and meant to be helpful.

Also, this relates inductive and deductive reasoning. The derivation is deductive
in breaking down problems and applying rules. But it also is inductive in how
we chose to break the problem apart.

5.4 Starting point

The goal is

• a formula for ∆(1)
n .

What do we have?

• The relationships in the successive differences table.

• More specifically, that ∆(2) is an arithmetic sequence starting at 14 with
an increment of 6.
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Extra mathematics and terminology we need include

• symbols for relations (< is less than, ≥ is greater than or equal to) and
summations (Σjk=i = i+ (i+ 1) + . . . + j);

• properties of arithmetic: commutative, associative, distributive; and

• that a series is the sum of a sequence.

We will prove that

• the formula for ∆(1)
n is 3n2 − n = n(3n− 1).

Continuing the same technique would show that

• the formula for An is n3 + n2 − 1.

Note that each formula involves nk where k is the number of columns to the
right.

5.5 The plan for deriving a formula

1. Rephrase the problem to include what we know.

2. Express the base sequence ∆(2) as a simple formula.

3. Substitute ∆(2) into an expression for ∆(1).

4. Break the resulting complicated expression into simpler components.

5. Pull the pieces back together.

6. Check the result.

5.6 The derivation

5.6.1 Rephrasing the problem

From the definitions used to form the table we know the following recurrence
relationships hold:

∆(1)
n & = ∆(1)

n−1 + ∆(2)
n , and

∆(2)
n & = ∆(2)

n−1 + ∆(3)
n .
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5.6.2 Expressing the base sequence

∆(3) is a constant sequence for n ≥ 4, so we know that ∆(2) is an arithmetic
sequence starting with 14 and using 6 as its increment. We can express the nth
term as

∆(2)
n = 14 + (n− 3) · 6 for n ≥ 3

and extend it to the previous entries by defining

∆(2)
n = 0 for n < 3.

(Note: Multiplication is written many ways. Each of a ∗ b = a× b = a · b = ab
are different common forms. The × symbol can be confused with the letter x
and is not used often.)

(The term n− 3 shifts n down so the sequence fits our tables. We could have
built the table directly across with ∆(1)

n = An+1 −An. Either choice is fine, and
this alternative likely work more clearly here.)

5.6.3 Substituting into ∆(2) into the expression for ∆(1)

Expanding the recurrence for ∆(1)
n provides

∆(1)
n = 10 + Σnk=2∆(2)

k for n ≥ 2,

and again we define ∆(1)
n = 0 for n < 2.

(The expression Σj
k=ixn denotes the sum of all terms starting at i and ending

after j. Σ is a capital Greek S. So Σ5
k=1i = 1 + 2 + 3 + 4 + 5 = 15.)

Consider only the term Σn
k=2∆(2)

k . First note that ∆(2)
n is non-zero only when

n ≥ 3, so we can pull out the k = 2 term,

Σnk=2∆(2)
k = 0 + Σnk=3∆(2)

k .

Then simplify using 0 + x = x and substitute the expression for ∆(2)
n ,

Σnk=2∆(2)
k = Σnk=3(14 + 6(k − 3)).

5.6.4 Breaking down the complicated expression

Now we use a few properties of addition and multiplication. We will return to
these definitions in later chapters.

• Addition is commutative, a+b = b+a, and associative, (a+b)+c = a+(b+c).

• Multiplication also is commutative, ab = ba, and associative, (ab)c = a(bc).
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• Multiplication is the same as repeated adding, so 3x = x+ x+ x.

• Multiplication is distributive over addition, so ab+ ac = a(b+ c).

With the associative and commutative properties of addition, we rewrite

Σnk=3(14 + 6(k − 3)) = (Σnk=314) + (Σnk=36(k − 3)).

Again, we break the sum apart and work on the pieces. Because multiplication
and repeated addition are the same,

Σnk=314 = 14 · ((n− 3) + 1) = 14 · (n− 2).

There are j− i+ 1 terms in the series Σjk=i14. A series is the sum of a sequence.

Applying the distributive property,

Σnk=3(k − 3) · 6 = 6 · Σnk=3(k − 3),

where we pull out the 6 because it does not depend on the summation variable
k. Applying associativity and commutativity again to the Σnk=3(k − 3) term,

Σnk=3(k − 3) · 6 = 6 · (−3(n− 2) + Σnk=3k).

Consider the term Σn
k=3k. We know the sum from 1 to n is n(n + 1)/2. We

present two routes for reducing Σnk=3k to what we already know. The first is to
extend the series and subtract the added terms, so

Σnk=3k = (Σnk=1k)− Σ2
k=1k = n(n+ 1)/2− 3.

The second shifts the summands to the summation starts at 1. It’s far more
complicated but also more general. I won’t cover this during class, but it’s
in the notes.

The other route, shifting the summation

Our reason for exploring this route is to demonstrate shifting the indices over
the summation. To do this, we need to substitute k = i+ 2 to reach

Σnk=3k = Σni+2=3(i+ 2).

Now remember that the Σ notation implies that we use i+ 2 = 3, 4, . . . , n. To
more the 2 across the equality, we must subtract it from all of the indices, and

Σnk=3k = Σni+2=3(i+ 2) = Σn−2
i=1 (i+ 2).
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Now we can separate the terms again and apply Σn−2
i=1 i = (n− 2)(n− 1)/2 as

well as Σn−2
i=1 2 = 2(n− 2) to see that

Σnk=3k = (n− 2)(n− 1)/2 + 2(n− 2)
= (n− 2)(n− 1 + 4)/2
= (n− 2)(n+ 3)/2.

This appears to be a different result, but subtracting one expression from the
other and expanding results in zero and proves that they are equal.

5.6.5 Pulling the pieces together

To recap, we began with the relationships

∆(2)
n & = 14 + 6(n− 3) for n ≥ 3, and

∆(1)
n & = 10 + Σnk=2∆(2)

k for n ≥ 2.

Substituting ∆(2)
n into ∆(1)

n , regrouping the result and expanding produced many
non-trivial subexpressions. Gathering them into one shows

∆(1)
n = 10 + (14(n− 2) + 6(−3(n− 2) + n(n+ 1)/2− 3)) for n ≥ 2.

Simplifying reveals

∆(1)
n = 10 + (3n2 − n− 10) = 3n2 − n for n ≥ 2.

5.6.6 Checking the result

n ∆(1)
n 3n2 − n

1
2 10 12-2 = 10
3 24 27-3 = 24
4 44 48-4 = 44

. . . . . . . . .
10 300-10 = 290

5.7 Homework

Practice is absolutely critical in this class.

Groups are fine, turn in your own work. Homework is due in or before class on
Mondays.
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• Exercises for Section 1.2:

– Problem 49. Working inductively here is far simpler than deriving
the formula.

– Problems 51, 54. Try both inductively and by playing with the
formula.

Note that you may email homework. However, I don’t use MicrosoftTM products
(e.g. Word), and software packages are notoriously finicky about translating
mathematics.

If you’re typing it (which I advise just for practice in whatever tools you use),
you likely want to turn in a printout. If you do want to email your submission,
please produce a PDF or PostScript document.
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Chapter 6

Solutions for first week’s
assignments

Also available as PDF.

6.1 Notes on received homeworks

• The goal of homeworks is practice on the topics covered in the text and in
class. If you’re unsure how to tackle one problem, look at the problems
nearby or at examples. One may be more clear to you and help you with
the assigned problem.

• I have office hours now. Monday and Wednesday 1.30pm to 2.30pm (or
possibly later) in the Math Lab down the hall.

• Be sure to read the entire problem. Many submissions contained only
partial answers even when it was clear you understood the mechanism.

• With problems involving large numbers, expect most calculators and
computer software to break. Try to check results using properties of the
input numbers. For example the product of two numbers with units digit
1 also has units digit 1. Or that the product of two d digit numbers has
either 2d or 2d− 1 digits. (Think about long-hand multiplication to find
these and other properties.)

• If there are questions about which problems were assigned or what the
problem is asking, contact me even if it’s the night before the homework is
due! I may not respond instantly, but it’s worth a shot.

• Because there was apparent confusion over which problems were assigned,
I will start providing the homework on a separate page as well as directly

39
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in the notes.

• In general, writing out steps cushions the blow if the result is incorrect.
And writing out reasons helps even more. If your homework must be late,
reasoning in your own style and words shows you did not just copy solutions.
This class is as much about the method of thinking and communicating as
it is about the final results!

• Remember that homework is one 20% chunk. But there will be 14 or 15
assignments. Each is at most . . . And if there are 10-20 problems per
assignment, then each assignment is at most. . . This is another reason why
homeworks are frequent. The impact of each assignment is a little less
when there are many.

6.2 Exercises for Section 1.1

6.2.1 Even problems, 2-12

2 Deductive. The “if-then” rule about medicine is a premise that is immediately
applied.

4 Inductive. The three children are examples, but there is no rule dictating
birth gender.

6 Deductive. An “if-then” rule is given and applied.

8 Deductive. The rule is implicit, but the conclusion is derived from data and
rules rather than repeated examples.

10 Inductive. Only repeated observations are used to justify the conclusion.

12 Inductive. Again, only observations enter into the reasoning.

6.3 Explain the “trick” of Section 1.1’s example

A list of numbers as in Section 1.1 (2, 9, 16, 23, 30) does not mean anything on
its own. The context before this example implies that one should look for an
arithmetic relationship.

The “trick” is that a premise is withheld. As in poorly written mystery novels,
crucial information is not available.

All reasoning is based on premises (hypotheses, suppositions, etc.) wether implicit
or explicit. “Trick” questions like Section 1.1’s example rely on misleading you
into using an incorrect implicit premise.
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6.4 Exercises for Section 1.2

6.4.1 Problems 2, 9, and 10

Problem 2

3
14 11
31 17 6
54 23 6
83 29 6

118 35 6
159 41 6

Problem 9

The formula provided in the text is of order 4, or in other words the highest
power of the argument n is n4. (Another phrase for this is that the formula is
quartic.) We expect to need 4 columns to the right of the original sequence (1,
2, 4, 8, 16, 31) to reach an arithmetic sequence.

points regions ∆(1) ∆(2) ∆(3) ∆(4)

1 1
2 2 1
3 4 2 1
4 8 4 2 1
5 16 8 4 2 1
6 31 15 7 3 1
7 57 26 11 4 1
8 99 42 16 5 1

The formula provided is

R(n) =
1
24
(
n4 − 6n3 + 23n2 − 18n+ 24

)
.

One can compute this directly with any method to verify that the answer is 99.

One convenient way to rewrite a polynomial for evaluation is Horner’s rule.
Horner’s rule applies the distributive property of multiplication over addition to
pull factors of n out of subexpressions. This rule not only is faster when using a
calculator, it also incurs fewer rounding errors when n is not an integer.
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Applying Horner’s rule,

R(n) =
1
24

((n3 − 6n2 + 23n− 18)n+ 24)

R(n) =
1
24

(((n2 − 6n+ 23)n− 18)n+ 24)

R(n) =
1
24

((((n− 6)n+ 23)n− 18)n+ 24)

Subsituting 8 we find that

R(8) =
1
24

((((8− 6) · 8 + 23) · 8− 18) · 8 + 24)

=
1
24

(((2 · 8 + 23) · 8− 18) · 8 + 24)

=
1
24

((39 · 8− 18) · 8 + 24)

=
1
24

(294 · 8 + 24)

=
1
24

(2376).

Dividing directly again verifies the result is 99, but a technique to avoid the
division is recognizing that 2376 = 2400− 24. Then

R(8) =
1
24

(2376) =
1
24

(2400− 24) = 100− 1 = 99.

Problem 10

The problem is of order 2 (or is quadratic), so we expect two columns beyond
the initial sequence.

n n2 + 3n+ 1 = (n+ 3)n+ 1 ∆(1) ∆(2)

1 5
2 11 6
3 19 8 2
4 29 10 2
5 41 12 2

Substituting 5 into (n+ 3)n+ 1 produces (5 + 3) · 5 + 1 = 8 · 5 + 1 = 41, verifying
the result.

6.4.2 Problems 14 and 16

Problem 14

There are two reasonable ways to extend the left pattern. Either is reasonable,
and both demonstrate the same property.
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The first prepends 10 to each number on the left. The resulting pattern is

101× 101 = 10 201,
10 101× 10 101 = 102 030 201, and

1 010 101× 1 010 101 = 1 020 304 030 201.

The second possiblity “reflects” the number across the leading or trailing 1. The
resulting pattern is

101× 101 = 10 201,
10 101× 10 101 = 102 030 201, and

101 010 101× 101 010 101 = 10 203 040 504 030 201.

The common property is that squaring a number with alternating 1 and 0 digits

With these short sequences, the zeros only serve to make the pattern more
obvious. Note that 112 = 121 and 1112 = 12 321. This pattern will break after
the central digit is 9. Why?

Note that computing 101 010 1012 with common desktop computers may produce
10 203 040 504 030 200. The last digit falls off the end of how computers represent
floating-point numbers. Computing in integers on “32-bit” computers may
produce 28 if the calculation wraps around the 32-bit boundary.

This is one reason why looking for patterns and developing a number sense is
important. Errors in calculated results depend on the method used for calculation.
Most programs or devices do not explain their methods, so recognizing patterns
and other properties are important to prevent being misled.

Problem 16

The next line could well be

1 + 2 + 3 + 4 + 5 + 4 + 3 + 2 + 1 = 52.

One method for verifying the result is simple calculation.
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Another is to rearrange the problem slightly to show the pattern

1 = (
1∑
i=1

i) + (
1−1∑
i=1

i) = 12,

1 + 2 + 1 = (
2∑
i=1

i) + (
2−1∑
i=1

i) = 22,

1 + 2 + 3 + 2 + 1 = (
3∑
i=1

i) + (
3−1∑
i=1

i) = 32, and

1 + 2 + 3 + 4 + 3 + 2 + 1 = (
4∑
i=1

i) + (
4−1∑
i=1

i) = 42.

Using the formula
∑n
i=1 i = n(n+ 1)/2, the nth middle form is

n(n+ 1)
2

+
(n− 1)n

2
=
n2 + n+ n2 − n

2
= n2.

So the fifth term is indeed 52.

6.4.3 Problems 29 and 30

Problem 29

There are two clear ways to extend the formula S(n) = n(n+ 1)/2 into a formula
for the sum 2 + 4 + 6 + · · ·+ 2n.

One is to recognize that 2 + 4 + 6 + · · ·+ 2n = 2(1 + 2 + 3 + · · ·+ n) = 2S(n) =
n(n+ 1). Rephrasing the original problem using summation notation, we have
used

∑n
i=1 2i = 2

∑n
i=1 i = n(n+ 1).

Another is to consider the sum 2+4+6+· · ·+2n = (1+1)+(2+2)+(3+3)+· · ·+
(n+n) = (1+2+3+· · ·+n)+(1+2+3+· · ·+n) = S(n)+S(n) = 2S(n) = n(n+1).
In summation notation,

∑n
i=1 2i =

∑n
i=1(i+ i) = (

∑n
i=1 i)+(

∑n
i=1 i) = n(n+1).

Problem 30

This problem is about phrasing mathematical problems in a way that respects
the order of operations.

Some possibilities are the following:

• The square of the sum of the integers from 1 to n equals the sum of the
cubes of those same numbers.
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• The square of the sum of the first n whole numbers is the sum of their
cubes.

• Squaring the sum of the integers from 1 to n is the same as summing their
cubes.

The key is that on the left a sum is squared, while on the right cubes are added.

6.4.4 Problems 32, 39, and 51

This sequence of problems demonstrates similar points in different ways. They
are all related to each other and to Problem 16.

Problem 32

Each column (or row) of the blocked triangles represents the integers 1, 2, 3,
and 4 by the number of blocks in the column (or row). The total number of
blocks in each triangle is 1+2+3+4.

When flipped and combined, the total number blocks is the sum of the two
triangles, or 2 · (1 + 2 + 3 + 4). The combined figure is a rectangle consisting of
4 · 5 blocks. So 2(1 + 2 + 3 + 4) = 4 · 5, or 1 + 2 + 3 + 4 = (4 · 5)/2.

A better diagram would replace the left-most arrow with an addition operator
(+).

Problem 39

Drawing out the dots demonstrates the solution directly.

Or use the result of Problem 16. Note that the first sum,
∑n
i=1 i, is the nth

triangular number and that the second sum,
∑n−1
i=1 i, is the (n− 1)th triangular

number. Thus Problem 16 demonstrated that the sum of two consecutive
triangular numbers is a square.

Problem 51

Either draw a few consecutive figures from Problem 39 or use Problem 16.

6.4.5 Problem 49

The first pattern to observe is they are all of the form p(n)/2, where p(n) is some
polynomial of n. The next pattern is that the numerator p(n) = n(a · n− b) for
integers a and b. Then both a and b increase by one when adding a side.
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Using these patterns, the nth nonagonal number is

N(n) =
n(7n− 5)

2
.

Substituting 6, N(6) = 6(7 · 6− 5)/2 = 3(42− 5) = 111, adding more evidence
to the conjecture.

6.4.6 Problems 51 and 54

Problem 51

Oops. I think meant to give Problem 52 rather than repeat Problem 51, but that’s
my fault.

Problem 54

Filling in a few values,

n T (n− 1) 3T (n− 1) + n
2 1 5
3 3 12
4 6 22
5 10 35

The first, 5, suggests the five-sided pentagon that produces the second pentagonal
number. Later numbers add additional evidence.

One could prove the relationship by expanding 3T (n− 1) + n and simplifying
the expression, or

3T (n− 1) + n = 3
(

(n− 1)(n− 1 + 1)
2

)
+ n

=
3n2 − 3n

2
+ n

=
3n2 − 3n+ 2n

2

=
3n2 − n

2

=
n(3n− 1)

2
= P (n).



Chapter 7

Notes for 25 August

Notes also available as PDF.

7.1 Problem solving principles

• So far we’ve covered problem solving by recognizing and playing with
patterns.

• Pattern matching is one part of mathematical “common sense” and a
valuable way to start on a problem.

• Recognizing patterns is only one approach to problem solving.

• Mathematicial George Pólya spent much of his life considering how mathe-
maticians and others approach problems.

• His problem solving principles are a good general description.

7.1.1 Pólya’s principles

These are principles and not a recipe or a plan. Use these to form a problem-
solving plan. (Problem solving itself is a problem. . . ).

The principles are very well explained in Pólya’s light book, How to Solve It. He
later goes into much depth in his two part series on Mathematics and Plausable
Reasoning (volume 1, volume 2).

• Understand the problem

• Divise a plan

– Text provides ideas, and we will cover a few.

47
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• Carry out the plan

• Examine the solution

7.1.2 Understand the problem

• Goals in understanding: Find the data you have and the solution you need.

• Often helps to rephrase a few ways.

– In English (or whatever is appropriate)

– With mathematical notation

• Determine what may be relevant.

• Sketch the problem graphically, with numbers, with physical items. . .
Whatever works for you on this problem.

• Decide if the problem may have a reasonable solution.

• Example: Problem of the seven coins.

7.1.3 Divise a plan

• Goal: Decide on an approach to the problem.

– The first plan is your initial plan.

– You may need to toss it aside and form a new one...

– Often useful to approach a problem with a few plans at once.

• Taxonomy of plans in the text.

• Plans apply inside and in conjunction with other plans.

• Few problems fall to a single technique.

• Being excessively clever is not a plan.

• Most “cleverness” comes from experience and practice.

Sure I’m lucky. And the more I practice, the luckier I get. – Gary
Player, golfer

• When I think about the strategy, I consider what I want to write about it.
A major goal of mathematics is communicating ideas well.

• To communicate a plan to others, you need all the understanding and
precision necessary to carry out the plan.
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7.1.4 Carry out the plan

• Details depend on the plan. . .

• May work, may not work.

• Dead-ends are common when approaching new styles of problems.

• Moving through the plan requires attention to detail.

– Mathematicians and scientists grow to loath +/- signs.

– Eventually, you learn which details can be “fixed” later.

7.1.5 Examine your solution

• Very, very important.

• Check your results somehow, possibly by varying the problem a little.

• Trying a different solution technique also can check your problem.

– Re-trying the same technique often does not help. People often make
the same mistakes.

• Try to generalize a little.

• Interpret your results by writing sentences. Often provides a check in
itself, or leads to an alternate route.

– Common in mathematics: First publication of a result is long and
hairy. Interested people being interpreting it, and a short or more
direct proof is found.

– Erdős and the “book proof”.

7.2 Making a lists and tables

• Lists are useful for

– counting items, and

– systematically searching possibilities.

• Planning includes deciding how to construct the list.

– The method must be systematic and easy.

– Will get plenty of practice when building logic tables.

• Careful planning helps to construct a smaller list.

– Relationships found from understanding and guessing can help.

http://en.wikipedia.org/wiki/Paul_Erdős
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• We will talk about bisection, working with a list but not forming all of it,
next time (“trial and error”).

7.2.1 Example of a table

How many ways can you form 21 cents from dimes, nickles, and pen-
nies?

While thinking of the problem, note that the last 1 cent does not change the
number of ways to form the total. There always will be one penny involved. We
should just drop that one penny.

Plan: Form a table. Then the plan becomes how to form the table.

We can start with an extreme solution and modifiy it one row at a time. In the
table, we push change from left (higher) to right, while checking the total.

# dimes # nickles # pennies total cents = 20

2 2*10 = 20
1 2 10+2*5 = 20
1 1 5 10+5+5*1 = 20
1 10 10+10*1 = 20

4 4*5 = 20
3 5 3*5+5*1 = 20
2 10 2*5+10*1 = 20
1 15 1*5+15*1 = 20

20 20*1 = 1

So there are nine ways of forming 21 cents from dimes, nickles, and quarters.

7.3 Searching by guessing

• Guessing, a good start to just about every problem. Helps to:

– find examples,

– discover relationships,

– gain a feel for the problem,

– or just find the answer.

• Guessing randomly is of little use.

• Use relationships gleaned from understanding the problem to prune your
guesses.
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• Sometimes the relationships are as easy as “smaller inputs yield smaller
results.”

7.3.1 Example for guessing and checking

Complete the following triangle such that the numbers in the vertices are equal
to the sum of the variables adjacent to them. Assume all the variables are
positive integers.

16
a b

11 c 15

• When considering the problem, look for relationships that can guide your
guesses.

• Because a, b, and c are positive, we know the sum of any two is greater
than either. That is, 16 = a+ b > a, and 16 = a+ b > b.

• The initial plan becomes to pick numbers less than the ones shown.

• Try a guess, and notice that you only need to pick one number. The rest
are completely determined.

• So you can start with a and guess from numbers less than 11.

16
6 10

11 5 15

Now look back and consider some new relationships:

• 16 + 11 + 15 = 2(6 + 5 + 10).

• Try other numbers in the vertices, see if this relationship holds.

• For which numbers does this problem have a solution when a, b, and c all
are positive integers?

– What are the smallest numbers?

– What property must the sum of the numbers have?

7.4 Understanding dependencies, or ”working
backward”

• “Working backward” is short-hand for following the chain of dependencies
in a problem.
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• Useful when it looks like there’s no where to start, but there are definite
known points along the way.

• The plan:

– Start with what you know.

– Derive every quantity you can from that data.

– Repeat.

7.4.1 Example for following dependencies

Example 2 from the text:

Rob goes to the racetrack on a weekly basis. One week he tripled
his money but then lost $12. Returning to the track the next week
with all his money, he doubled his money but then lost $40. Again
he returned to the track with his money. He quadrupled his money
and lost nothing, taking home $224.

How much money did take on his first week above?

First, rephrase the problem mathematically. Let Mn be his total starting in
week n. We want M1. From the problem,

M2 = 3M1 − 12,
M3 = 2M2 − 40, and
M4 = 4M3 = 224.

As written, M2 depends on M1 and so on. But we only have the last total, M4.

So our plan:

• Rearrange dependencies to start from what we have and lead to what we
want.

Thus,

M1 = (M2 + 12)/3,
M2 = (M3 + 40)/2, and
M3 = M4/4.

Substituting M4 = 224,

M3 = 224/4 = 56,
M2 = (56 + 40)/2 = 48, and
M1 = (48 + 12)/3 = 20.

Looking back:



7.5. NEXT TIME: MORE TECHNIQUES 53

• Alternate approach: We could have algebraically substituted M2 and M3

into the expression for M4 and solved.

• End result is the same, but with less algebra.

7.5 Next time: more techniques

7.6 Homework

Practice is absolutely critical in this class.

Groups are fine, turn in your own work. Homework is due in or before class on
Mondays.

• Exercises for 1.3

– Understanding the problem: Problem 6

– Guessing and checking: problem 12

– Listing: problems 31, 35

– Dependencies and diagramming: 28, 57

Note that you may email homework. However, I don’t use MicrosoftTM products
(e.g. Word), and software packages are notoriously finicky about translating
mathematics.

If you’re typing it (which I advise just for practice in whatever tools you use),
you likely want to turn in a printout. If you do want to email your submission,
please produce a PDF or PostScript document.
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Chapter 8

Notes for 27 August

Notes also available as PDF.

8.1 Review: Pólya’s problem-solving principles

These are principles and not a recipe or a plan. Use these to form a problem-
solving plan. (Problem solving itself is a problem. . . ).

• Understand the problem

– Determine what data you have and what quantities you need.

– Try rephrasing the problem in words and in symbols.

– Look for relationships: symmetries, which items are fully determined
by others, etc.

• Divise a plan

– Remember previous similar problems and extend the pattern.

– Use relationships to help select possible plans.

– Make plans as specific as possible.

• Carry out the plan

– Pay attention to details.

• Examine the solution

– Check your solution, either directly or against relationships.

– Consider related (and future) problems.

Previous tactics:

55
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• Making lists or tables:

– Good for systematic searching or counting.

– Requires care in forming the tables.

• Guessing:

– Good for discovering or extending relationships.

– Rarely a complete plan on its own, but great for starting.

• Dependencies, or working backwards:

– Essentially, find the starting point and then exhaust all the rules or
formulas that apply. (Breadth-first)

– Or try following one piece of data through all possible rules, then
backtrack. (Depth-first)

Today, a few more tactics:

• “Trial and error”, but a bit more systematically and quickly through
bisection.

• Using simpler sub-problems to find patterns.

8.2 Effective trial and error by bisection

Remember:

Geometric sequence Sequence of numbers defined by a starting number and
a constant multiplier. The second number is generated by multiplying by
the constant, the third by multiplying again, and so on.

Consider the sequence where 3 is the starting number and two is the constant.

n Term

1 3 = 3 · 20 = 3 · 2n−1

2 6 = 3 · 21

3 12 = 3 · 22

...
...

...

Which term in the sequence is 768?

8.2.1 Understanding the problem

• What do we have?

– Definition of a specific geometric sequence, 3 · 2n−1.
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• What do we need?

– A specific term equal to 768.

8.2.2 Forming plans

• Baring use of logarithms, what is one possible plan?

– Extend the table until it reaches 768.

• A list would work, but could be long.

– Guess how long.

∗ What is 210? 1024. What is 3 · 210? 3072.

• Now we have more information.

– So we know the third term is smaller, 12 < 768, and the eleventh
term is larger, 3072 > 768.

• Consider filling in only some entries of the list. Which to try next?

• Try going half-way, a new plan.

8.2.3 Carrying out the new plan

• Half-way is the seventh term, 3 · 26 = 192.

• Now what do we know?

– That 768 must be after the seventh term and before the eleventh.

• Half-way again is the ninth term, 3 · 28 = 768.

8.2.4 Looking back

• Calculated three additional terms (12, 7, 9) rather than six (4, 5, 6, 7, 8,
9).

• When considering finding an entry by a list, look for an ordering relation-
ship.

– Each entry no smaller or larger than the previous. (How does that
differ from always being larger/smaller? )

– Or if you’re looking for a property, try to order the list so that all
those after a point have (or don’t have) that property.

• Use the ordering to reduce work (and errors).
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– Calculate a few entries spaced far apart.

– Find entries that bracket your search target. So you know your target
is between a and b, or in (a, b).

– Then look half-way to form a new bracket. The new bracket will be one
of (a, (a+ b)/2) or ((a+ b)/2, b). Remember to round consistently.

8.3 Simpler sub-problems for finding patterns

What is the units digit of 7100?

• Relatively straight forward, so try examples to gain a feel for the problem.

Number Expanded Last digit

70 1 1
71 7 7
72 49 9
73 343 3
74 2401 1
75 7
76 9
...

...
...

• Want a quick plan for generating examples.

– Bisection doesn’t apply. We know which entry we want, and the digits
go up and down.

– What relationship can we use?

– While generating 2401, only needed the product of 7 with the prior
last digit.

• But now we have 1 as the last digit. A few more lines, and we see the
pattern. The 1 begins a pattern.

• What is the pattern?

– The table breaks into groups of four lines.

– The all repeat 7, 9, 3, 1.

• Restate what we have more abstractly. For each i, we know that

– the last digit of 74i = 1,

– the last digit of 74i+1 = 7,

– the last digit of 74i+2 = 9, and

– the last digit of 74i+3 = 3.
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• Where does 7100 fall?

– 7100 = 74·25, so its last digit is 1.

Looking back:

• On the technical side, we only needed to track the last digit.

– This will return when we break apart numbers in Chapters 4-6.

• There were no simple phases corresponding to the principles, but all
applied.

• New facts and new patterns let us understand more of the problem.

• Each led to new plans and new phrasings.

8.4 Other sources for tactics and examples

• The Math 202 notes. The notes currently are at

http://jriedy.users.sonic.net/math202-f08/ .

• Pólya’s books. In particular, the majority of How to Solve It consists of a
compendium of ideas and techniques.

8.5 Next time: Reading graphs and charts

Recommended reading: Anything by Edward Tufte. The “Ask E.T.” section of
his personal site (http://www.edwardtufte.com) has examples of excellent and
poor graphics.

8.6 Homework

Practice is absolutely critical in this class.

Groups are fine, turn in your own work. Homework is due in or before class on
Mondays.

• Describe not only the result but also your approach in the following.

• From problem set 1.3:

– Problem 28 for following dependencies

– Problem 40 both for bisection and guessing a reasonable range

– Problem 52, think of bisection

http://jriedy.users.sonic.net/math202-f08/
http://www.librarything.com/work/7588
http://en.wikipedia.org/wiki/Edward_Tufte
http://www.edwardtufte.com
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– Problem 56, think about lines and the shapes you can form

– Problem 61, look for a pattern

• How many ways can you make change for 60 cents using pennies, nickles,
dimes, and quarters. Either take great care in forming a long list, or look
for a relationship using smaller problems.

A hint for a long list: Do you need to move pennies one at a time?

A hint for a relationship: Consider the old example of 20 cents using
pennies, nickles and dimes. How many ways are there to change 20 cents
using only pennies and nickles? How many ways to change 20 cents minus
one dime using all the coins? The relationship makes constructing a table
much easier.

Note that you may email homework. However, I don’t use MicrosoftTM products
(e.g. Word), and software packages are notoriously finicky about translating
mathematics.

If you’re typing it (which I advise just for practice in whatever tools you use),
you likely want to turn in a printout. If you do want to email your submission,
please produce a PDF or PostScript document.



Chapter 9

Notes for 29 August

Notes also available as PDF.

9.1 Review: Pólya’s problem-solving principles

These are principles and not a recipe or a plan. Use these to form a problem-
solving plan. (Problem solving itself is a problem. . . ).

• Understand the problem

• Divise a plan

• Carry out the plan

• Examine the solution

Some tactics we’ve covered:

• Making lists or tables

• Guessing

• Dependencies, or working backwards

• “Trial and error”, but a bit more systematically and quickly through
bisection

• Using simpler sub-problems to find patterns
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9.2 Notes on the homework

• The goal of homeworks is practice on the topics covered in the text and in
class. If you’re unsure how to tackle one problem, look at the problems
nearby or at examples. One may be more clear to you and help you with
the assigned problem.

• I have office hours now. Monday and Wednesday 1.30pm to 2.30pm (or
possibly later) in the Math Lab down the hall.

• Be sure to read the entire problem. Many submissions contained only
partial answers even when it was clear you understood the mechanism.

• With problems involving large numbers, expect most calculators and
computer software to break. Try to check results using properties of the
input numbers. For example the product of two numbers with units digit
1 also has units digit 1. Or that the product of two d digit numbers has
either 2d or 2d− 1 digits. (Think about long-hand multiplication to find
these and other properties.)

• If there are questions about which problems were assigned or what the
problem is asking, contact me even if it’s the night before the homework is
due! I may not respond instantly, but it’s worth a shot.

• Because there was apparent confusion over which problems were assigned,
I will start providing the homework on a separate page as well as directly
in the notes.

• In general, writing out steps cushions the blow if the result is incorrect.
And writing out reasons helps even more. If your homework must be late,
reasoning in your own style and words shows you did not just copy solutions.
This class is as much about the method of thinking and communicating as
it is about the final results!

• Remember that homework is one 20% chunk. But there will be 14 or 15
assignments. Each is at most . . . And if there are 10-20 problems per
assignment, then each assignment is at most. . . This is another reason why
homeworks are frequent. The impact of each assignment is a little less
when there are many.

9.3 Reading graphs: delayed until Monday (or
later)

9.4 Homework

Practice is absolutely critical in this class.

mailto:jason@acm.org
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Groups are fine, turn in your own work. Homework is due in or before class on
Mondays.

• Following Pólya’s principles, write a careful solution for the following
problems:

– From last week’s homework: Section 1.2, problems 9 and 49

– From this week’s homework: Section 1.3, problem 40

For the write-up, use each of Pólya’s principles as a section heading. Begin
with a section on Understanding the Problem (or an equivalent phrase)
detailing what you have, what you want, and what (if any) relationships
you see immediately. Then under something like Devise a Plan, construct
a detailed plan. In Carry out the Plan, perform whatever operations
are required. Then under Examine Your Solution (or Look Back, etc.),
check your solution and rephrase it in English

• Using whatever calculator or program

– Compute 1/7. Write down the number exactly as displayed. Then
subtract what you have written from the calculator’s or program’s
result. For a calculator, divide one by seven and then subtract off
what you see without storing the result elsewhere. For a spreadsheet
or other interface, divide one by seven. Then compute 1/7− .14 · · ·
for whatever was displayed. What is the result? What did you
expect? What result did others find?

– Enter .1 into whatever device you use. Add .1 to it. Repeat eight
more times, for a total of 10 · .1. Subtract 1. What is the result?
What did you expect? What result did others find?

Note that you may email homework. However, I don’t use MicrosoftTM products
(e.g. Word), and software packages are notoriously finicky about translating
mathematics.

If you’re typing it (which I advise just for practice in whatever tools you use),
you likely want to turn in a printout. If you do want to email your submission,
please produce a PDF or PostScript document.
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Chapter 10

Solutions for second week’s
assignments

Also available as PDF.

10.1 Exercises for Section 1.3

10.1.1 Problem 6: Understanding

The problem begins by stating that “[t]oday is your first day driving a city
bus.” At the end, the question posed is “[h]ow old is the bus driver?” The other
information is irrelevant, and the result is your age. (You need not provide your
age. The fact that “you” are the bus driver is all that matters.)

10.1.2 Problem 12: Guessing and checking

When playing around with the problem, you may realize that if each of the three
parts has the same sum, then each must equal 1/3 of the total sum. The sum∑12
i=1 i = 12(12 + 1)/2 = 6 · 13, so we can guess that three equal parts each will

total 6 · 13/3 = 2 · 13 = 26.

Now the problem becomes positioning lines such that the totals are 26. The
smaller numbers (e.g. 1, 2) need combined with some of the larger numbers
(e.g. 11, 12) to total 26. So we can guess that one of the lines will be nearly
horizontal across the top. First try a line that separates the top four numbers,
so 11 + 12 + 1 + 2 = 26.
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Now the other line cannot intersect the first inside the clock or else the clock
will be divided into four parts. My first guess was to anchor one end of the new
line where the previous line ran under 2. That would cut a pie-like slice and
only include numbers on the opposite side. The closest adding the facing side
can come to 26 is 10 + 9 + 8 = 27, so clearly that was not correct. If we chop
off the 8, that leaves 10 + 9 = 19 and needs 7 more to match 26. So run the
right-hand side down, no longer cutting out a pie-like slice but including some
numbers from both sides. Then we can include 3 + 4 = 7.

So far, my guesses separated 11 + 12 + 1 + 2 = 26 and 10 + 9 + 3 + 4 = 26. With
the remaining numbers, 5 + 6 + 7 + 8 = 26, so the problem is solved.

In hindsight, however, I see my previous guess was being far too fancy. Note
that each slightly diagonal slice adds to 13. That is, 12 + 1 = 13, 11 + 2 = 13,
and so on down to 7 + 6 = 13. So we need only combine consecutive slices to
create the necessary three regions.

10.1.3 Problem 31: Listing

here most of the problem lies in figuring out an appropriate representation. Then
starting to make lists show the way to an answer.

If we were to list all combinations of “black” and “white”, that would be 1.4×1011

combinations. So this list likely is not what I meant by mentioning listing.

A shorter method is to list all combinations of two socks, or BB, BW, WW. The
order does not matter in the end. In the BW case we do not have two socks of
the same color, so the result cannot be two.

Now the combinations of three socks are BBB, BBW, BWW, WWW. In each of
these we have two socks of the same color. So if we pull out three socks, we are
guaranteed to have two matching socks. Since two did not work, the smallest
number of socks you can pull without looking to have two of the same sock is
three.

Another way to view the problem is by ticking off marks in the following for
each sock drawn:

Black White

Once you have a tick mark in both, the next mark must land in an occupied
slot. So the longest sequence of marks without a duplicate is checking off one
and then the other, or two marks. After two, you must mark an occupied slot.

This is a consequence of the pigeonhole principle. When there are more pigeons
than holes, there must be at least two pigeons in one hole. You can use the same
principle to prove that there must be two people in the Tri-cities area with the
same number of hairs on their heads.
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10.1.4 Problem 35: Listing

The simplest solution is to start listing numbers. The text’s example of 28 shows
you will not need to list more than 28 numbers. And because 1 has no factor
other than itself, we can skip the first obvious entry.

2 6= 1
3 6= 1
4 6= 1 + 2 = 3
5 6= 1
6 = 1 + 2 + 3

We could construct the list without the prime numbers 2, 3, 5, etc. A prime
number has only itself and 1 as factors, so we know that they cannot be perfect
numbers.

Aside: What would the entry for 1 be? One has no factors other than itself. You
would sum over ∅, the empty set. There is no single definition. In the context of
this problem, we could define that sum to be zero. That would be consistent
with the rest of the problem and perfectly ok. But it’s not a completely standard
definition.

Dealing with vacuous cases like the sum of entries of ∅ is tricky, but there is a
general rule of thumb. Often the vacuous definition needs to be the identity of
the operation. Here, zero is the identity element for addititon because x+ 0 = 0
for all x. So it’s a safe guess that the sum of the entries in the empty set could
be defined to zero.

Another side: No one knows if there are infinitely many perfect numbers, or if
there are any odd perfect numbers.

10.1.5 Problem 28: Following dependencies

Let M1 be the initial amount, M2 be the amount after buying the book, M3

be the about after the train ticket, M4 be the amount after lunch, then M5 be
the final about after the bazaar. Translating the problem into a sequence of
equations,

M2 = M1 − 10,
M3 = M2/2,
M4 = M3 − 4,
M5 = M4/2, and
M5 = 8.

The only fully resolved data we have is M5 = 8, so we start there. First
M5 = 8 = M4/2, so M4 = 16. Then 16 = M3 − 4 and M3 = 20. Next,
20 = M2/2 so M2 = 40. Finally, 40 = M1 − 10 and M1 = 50.
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10.1.6 Problem 57: Following dependencies

This is an exercise in translating the words into mathematical relations and then
working through the dependencies.

Translate each statement into an equation

x2 = 3x1,

x3 = x2 +
3
4
x2,

x4 = x3/7,

x5 = x4 −
1
3
x4,

x6 = x2
5,

x7 = x6 − 52,
x8 =

√
x7,

x9 = x8 + 8,
x10 = x9/10, and
x10 = 2.

Following these backwards shows that

x9 = 20,
x8 = 12,
x7 = 144,
x6 = 196,
x5 = 14,
x4 = 21,
x3 = 21 · 7(note the next step divides by 7, so don’t expand),
x2 = 84, and
x1= 28.

10.1.7 Problem 40: Bisection and guessing a range

See the write-up below.

10.1.8 Problem 52: Think about bisection

With eight coins, split them into two groups of four. One will be lighter. Split
the lighter group of four into two groups of two. Again, one is lighter. Now the
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lighter group of two splits into two single coins. The lighter of the two coins is
fake.

For the trick of two weighings, we first consider weighing two groups of three
coins. If the groups are equal, we are left with the two remaining coins. Those
two can be separated in one more weighing. If the groups of three are unequal,
split the lighter one into three groups of one. Compare two of those single coins.
If they are of the same weight, the left-over coin must be fake. Otherwise the
lighter coin is the fake. Any path here requires only two weighings. This is an
example trisection, separating the problem into three groups at each level.

10.1.9 Problem 56

A rotated square with each vertex located at the midpoint of the given square’s
sides will separate the kitties.

10.1.10 Problem 61: Look for a pattern

Calculating 1/7 to a few places shows 1/7 = 0.14285714285714 · · · The expansion
appears to repeat in groups of six. Because 100 = 16 · 6 + 4, we expect that the
100th digit after the decimal point is 8.

10.2 Making change

How many ways can you make change for 60 cents using pennies,
nickles, dimes, and quarters. Either take great care in forming a long
list, or look for a relationship using smaller problems.

A hint for a long list: Do you need to move pennies one at a time?

A hint for a relationship: Consider the old example of 20 cents using
pennies, nickles and dimes. How many ways are there to change 20
cents using only pennies and nickles? How many ways to change 20
cents minus one dime using all the coins? The relationship makes
constructing a table much easier.

This is a classical problem used in discrete mathematics and introductory com-
puter science classes, although often starting with a dollar to make tabling less
practical.

There are 73 ways.

There are at most two quarters, at most six dimes, at most 12 nickles, and at
most 60 pennies per line of a table with the following heading:

Pennies Nickles Dimes Quarters total
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To generate the table, start with two quarters and then shift amounts over as
in other problems. You use the conserved quantity, the total amount, to guide
your next choice.

Another method for solving this problem is to set up recurrence relationships
and build a slightly different and much, much shorter table.

Consider making change for an amount N . And consider four different ways for
making such change:

AN with only pennies,
BN with nickles and pennies,
CN with dimes, nickles, and pennies, and
DN with quarters, dimes, nickes, and pennies.

Say we start at N and the full collection of possible coins. Then either the
change contains a quarter or it does not. If it does contain with a quarter, then
we change the remaining N − 25 in the same way, possibly with more quarters.
If not, then we change N no quarters. So

DN = CN +DN−25.

Similarly,

CN = BN + CN−10, and
BN = AN +BN−5.

We can begin constructing a table of values by N starting from the extreme
case N = 0. There is only one way of making no change at all, so A0 = B0 =
C0 = D0 = 1. There also is only one way of making change with pennies, so
AN = 1 for all N . And the relations above show we need only rows where N is
a multiple of five and provide formulas for every entry.

The table is as follows:
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N AN BN CN DN

0 1 1 1 1
5 1 2 2 2
10 1 3 4 4
15 1 4 6 6
20 1 5 9 9
25 1 6 12 13
30 1 7 16 18
35 1 8 20 24
40 1 9 25 31
45 1 10 30 39
50 1 11 36 49
55 1 12 42 60
60 1 13 49 73 = 49 + 24

10.3 Writing out problems

10.3.1 Section 1.2, problem 9

Understanding the problem

We need to extend the sequence of interior regions to find the number of regions
when there are seven and eight points. We have the first six entries of the
sequence.

Devise a plan

Given the first six entries, we can form a successive difference table to extrapolate
the sequence.

Carry out the plan

The table follows:

points regions ∆(1) ∆(2) ∆(3) ∆(4)

1 1
2 2 1
3 4 2 1
4 8 4 2 1
5 16 8 4 2 1
6 31 15 7 3 1
7 57 26 11 4 1
8 99 42 16 5 1
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Examine the solution

Computing R(7) = 1
24 (74 − 6 · 73 + 23 · 72 − 18 · 7 + 24) = 57 and R(8) =

1
24 (84 − 6 · 83 + 23 · 82 − 18 · 8 + 24) = 99 confirms the table’s results. Also
note that the table needed four columns to the right of the sequence to find the
constant increment. This matches the degree, four, of the polynomial.

10.3.2 Section 1.2, problem 49

Understanding the problem

We need to inductively determine the formula for N(n), the nth nonagonal
number. We have the following formulas:

H(n) =
n(4n− 2)

2
,

Hp(n) =
n(5n− 3)

2
, and

O(n) =
n(6n− 4)

2
,

for the hexagonal, heptagonal, and octagonal numbers.

Devise a plan

The plan is to look for a pattern in the formulas for H(n), Hp(n), and O(n).
That lets us predict N(n).

Carry out the plan

All the formulas provided are of the form

n(an+ b)
2

,

so we examine patterns in a and b.

The values of a are 4, 5, and 6. This suggests the next will be 7. And the values
of b are -2, -3, and -4, suggesting to continue the pattern with -5. So we expect
that the formula is

N(n) =
n(7n− 5)

2
.
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Examine the solution

To check, we verify that N(6) = 111. Indeed, N(6) = 6 · (42−5)/2 = 3 ·37 = 111,
supporting the guess. While not a proof, this is a enough evidence to elevate
the guess for N(n) to a conjecture.

10.3.3 Section 1.3, problem 40

Understanding the problem

We are looking for a year. That year is 76 more than the birth year of one of the
authors and is also a perfect square. The final answer is that year, x, minus 76.

Exploring the problem, we realize that the birth year in question must be within
76 years of publication of the text. The text was published in 2003. To stick to
round numbers for estimation, we look for years between 1900 and 2100.

Devise a plan

Look for an integer between 1900 and 2100 that is a perfect square. Knowing
that

√
1900 > 43 and

√
2100 < 46, we search the region 44 ≤ i ≤ 45. Bisection

here is overkill; there only are two choices after limiting the choices as above.

Carry out the plan

i i2 i2 − 76

45 2025 1949
44 1936 1860

So the result is that Hornsby was born in 1949, because 1860 is more than 76
years before 2003.

Examine the solution

Bisection here was unnecessary. Had we rounded outwards, though, and assumed
only 43 ≤ i ≤ 46, then bisection would have delivered the result in the first step.
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10.4 Computing with numbers

10.4.1 Extra digits from 1/7

Compute 1/7. Write down the number exactly as displayed. Then
subtract what you have written from the calculator’s or program’s
result. For a calculator, divide one by seven and then subtract off
what you see without storing the result elsewhere. For a spreadsheet
or other interface, divide one by seven. Then compute 1/7− .14 · · ·
for whatever was displayed. What is the result? What did you
expect? What result did others find?

With a computer using typical arithmetic, we may see 1/7 computed to be
0.142857142857143. Subtracting that off gives −1.38777878078145× 10−16, not
zero! Some computers (notably 32-bit Intel-like processors, although not under
recent versions of Windows) may show a different result; they store intermediate
results to extra precision.

With a calculator, you typically will see one or two non-zero digits. An 8-digit
calculator might display 0.1428571. Subtracting that off may show any of 0, 4,
42, or 43 depending on how the calculator rounded and how many extra digits
were kept. Most calculators keep a few extra digits past what is displayed.

10.4.2 Binary or decimal?

Enter .1 into whatever device you use. Add .1 to it. Repeat eight
more times, for a total of 10 · .1. Subtract 1. What is the result?
What did you expect? What result did others find?

Using a calculator, you probably see zero, exactly what you expect from 10 · .1−1.
Most hand-held calculators work with decimal arithmetic directly.

With most computers, you see −1.11022302462516× 10−16. This is because .1
cannot be represented exactly in binary. The fraction 1/10 when converted to
binary and computed does not terminate, just as 1/3 or 1/7 do not terminate in
decimal.

Some systems run decimal arithmetic in software and also will produce zero.
However, not all systems that show zero actually have zero stored as the result.
Some spreadsheet software is guilty of “cosmetic rounding”. They will display
the result as zero but actually carry the binary version; what you see most
certainly may not be what you get.



Chapter 11

Notes for reading graphs

Hopefully on 1 September.

Notes also available as PDF. Images as slides are available PDF as well.

11.1 Reading graphs

Everyone knows the basics for most plots. Find the data you have and follow
lines to find the result. But what about points in between?

Reading graphs is a form of inductive reasoning.

• Take care with your assumptions when reading graphs.

• Make your assumptions plain when creating graphs.

• Not all data need be graphed.

• Modern, measurable plots began roughly with William Playfair (1759-
1823).
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Room Size (ft2)

B
TU

0

4000

8000

12000

16000

20000

24000

150 200 340 450 550 850 1000 1400

The text’s Figure 10. So 850 square
feet needs a 16 000 BTU air
conditioner.

• What if you have a 900
square foot area? Might look
between nearby points.

• Or a 100 square foot area?
Only one nearby point.

Is there a relationship you can use?
(Text figure’s source: Carey, Morris, and James.

Home Improvement for Dummies, IDG Books.)

Room Size (ft2)

B
TU

0

4000

8000

12000

16000

20000

24000

150 200 340 450 550 850 1000 1400

• A first thought is to use a line.
• People often build items to fit

lines; it’s how we tend to
think.

• But the relationship here
doesn’t look like a line, does
it?

Room Size (ft2)

B
TU
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4000

8000

12000

16000

20000

24000

150 200 340 450 550 850 1000 1400

• As a first step, get rid of the
bars.

– The areas have no
meaning.

– But they aren’t bad here,
more on that later.

• We haven’t changed the data,
so this still does not appear to
be a line.
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Room Size (ft2)

B
TU
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24000

150 200 340 450 550 850 1000 1400

• Trying a statistical line fit:
Definitely no line here.

• But look at the x axis.
• Are the points spaced

appropriately?

Room Size (ft2)

B
TU
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8000

12000
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20000

24000

15
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20
0
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0

45
0

55
0

85
0

10
00

14
00

• Spread the points out, and
suddenly we do have a line.

– The BTU measurements
likely are rounded, so
not a perfect line.

• Now we can predict the BTUs
needed for any size without
having to poke at nearby
points and estimate
differences.

Room Size (ft2)

B
TU

0

4000

8000

12000

16000

20000

24000

150 200 340 450 550 850 1000 1400

The points:
• Bar charts like these often are

tables and not graphs.
• Inductive reasoning : Keep

track of your assumptions
when extrapolating visual
relationships.
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• Remember in the bar chart:
Areas did not matter.

• People are very, very bad at
judging areas.

• Given the one baloon
represents 12%, how large is
the one next to it?

(From the Onion (http://www.theonion.com))

• Given the one baloon
represents 12%, how large is
the one next to it?

• 22%
• This is the Onion, but the

graph is to scale.
• Not by area, but by length.
• But you see area first. . .

(From the Onion (http://www.theonion.com))

• Also beware graphs with too
much of a “slant”.

– (multiple meanings here)
• In a “pie chart”, areas are the

data.
• But people are very, very bad

at judging areas.
• Which is larger, 19.5% or

21.2%?
• Who is the 19.5% in this

image?
• Avoid 3D effects!

(at Macworld 2008, photo from Ryan Block of

Engadget (http://www.engardget.com))

http://www.theonion.com
http://www.theonion.com
http://www.engardget.com
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Vendor US market share (%)

RIM 39.0
Apple 19.5
Palm 9.8

Motorola 7.4
Nokia 3.1
other 21.2

• Never be afraid of using small
tables.

• Is there a problem with other
being the second largest?

• other : LG, Samsung,
Ericsson, . . .

• Knowing your premises:
– US-only.

∗ Nokia is #1
world-wide (40%)

∗ Samsung is #2
(15%)

∗ Motorola is #3
(10%)

– No history in this table,
no idea about future.
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This does not imply area is useless.

• Graphic by Charles Joseph Minard in 1869.

• Title: Carte figurative des pertes successives en hommes de l’Armée
Française dans la campagne de Russie 1812-1813

• Depicts Napolean’s 1812 march on Moscow and subsequent disaster.

• Displays many variables in one image:

– location on the map,

– direction by color,

– size by width, and

– temperature during the retreat by the graph on the bottom.

• At the time, an anti-war graphic!

• Considered one of the best graphical displays of data across all of history.
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11.2 Creating a graphical depiction of data

• Begin with questions:

– What should the reader take away?

– What does the data really imply?

– One graph should not have too many messages.

• Help the reader form correct comparisons. Items to compare should

– be represented similarly,

– and lie close together.

• People judge lengths much better than areas.

• Show causality, and avoid inferring causality where none exists.

– Plot unrelated quantites on different graphs, not on opposite axes of
the same graph.

• Use numbers and words.

• Do not use visual effects unless they directly portray data.

– Extraneous symbols were coined “chartjunk” by Edward Tufte.

– Many affects can distort data, particularly 3-d affects.

Will walk through some of my thoughts while creating graphics for a highly
technical paper.
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CPU cycles per entry

Basic qds then 2.4 : Exceptional
2.4: Subst. huge for Inf : Exceptional

Basic qds then 2.4 : Plain
2.4: Subst. huge for Inf : Plain

Basic qds then 2.3 : Exceptional
2.3: Subst. 1 for Inf/Inf : Exceptional

Basic qds then 2.3 : Plain
2.3: Subst. 1 for Inf/Inf : Plain

Basic qds then 2.2 : Exceptional
2.2: Subst. −pivmin for tiny : Exceptional

Basic qds then 2.2 : Plain
2.2: Subst. −pivmin for tiny : Plain
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MIPS R12000
Basic qds then 2.4 : Exceptional

2.4: Subst. huge for Inf : Exceptional
Basic qds then 2.4 : Plain

2.4: Subst. huge for Inf : Plain
Basic qds then 2.3 : Exceptional

2.3: Subst. 1 for Inf/Inf : Exceptional
Basic qds then 2.3 : Plain

2.3: Subst. 1 for Inf/Inf : Plain
Basic qds then 2.2 : Exceptional

2.2: Subst. −pivmin for tiny : Exceptional
Basic qds then 2.2 : Plain

2.2: Subst. −pivmin for tiny : Plain
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UltraSparc 2i

stationary:Plain
progressive:Plain

stationary:Exceptional
progressive:Exceptional

●

• Purpose: Display all our
experimental data without
much interpretation.

• Too much data for a simple
table?

• On the left: algorithms and
data cases (plain v.
exceptional)

• Blocks: Specific processors
• Below: CPU/processor cycles

per array entry
• Dotted vert. line: CPU cycles

for a critical operation
• Colors and symbols:

“direction” of algorithm and
data cases (repeated! )

• Graph allows simple
comparisons of our raw data.

(from Marques, Riedy, and Vömel. Benefits of

IEEE-754 features in modern symmetric tridiagonal

eigensolvers)

Ratio: time of careful qds / time of basic qds

P4 Xeon, SSE

P4 Xeon, x87

Itanium 2

Athlon

Opteron

MIPS R12000

Power 3

UltraSparc 2i

X1

1.0 1.5 2.0 2.5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

stationary
2.4: Subst. huge for Inf

progressive
2.4: Subst. huge for Inf
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2.3: Subst. 1 for Inf/Inf

progressive
2.3: Subst. 1 for Inf/Inf
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stationary
2.2: Subst. −pivmin for tiny

1.0 1.5 2.0 2.5

progressive
2.2: Subst. −pivmin for tiny

stationary progressive●

• Purpose: Determine if CPUs
impose penalties on certain
arithmetic features.

• Each algorithm (green bars)
uses a different feature.

• Ratio of “careful” over “plain”
shows a slow-down.

• Find outliers by looking down
and across:

– One direction
(“progressive”)
encounters more
problems than the other
(“stationary”)?

– Missing data here:
“stationary” ran far more
slowly, slow-down hidden
by total cost.

(from Marques, Riedy, and Vömel. Benefits of

IEEE-754 features in modern symmetric tridiagonal

eigensolvers)
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Ratio: time of alternate / time of (B)
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Basic qds then 2.2

0.8 1.0 1.2 1.4 1.6 1.8

progressive
Basic qds then 2.2

stationary progressive●

• Purpose: Begin interpreting
the data to determine which
single algorithm should be
used.

• Chose one algorithm, “B”, to
normalize others (2.2, 2.4).

– Reviewers (and authors)
missed a typo. “B”
should be 2.3.

• Could this have been a table?
– More than a page of

data in tabular form.
– Can be summarized by

statistics (median and
percentiles).

– Summaries were in the
text.

• Does this serve its purpose?
– With hindsight, not

really.
– Summary in the text was

better.
– This plot was

unnecessary.
(from Marques, Riedy, and Vömel. Benefits of

IEEE-754 features in modern symmetric tridiagonal

eigensolvers)

11.3 Graph galleries and resources

• Gallery of Data Visualization; The Best and Worst of Statistical Graphics:
http://www.math.yorku.ca/SCS/Gallery/

• Edward Tufte’s site: http://www.edwardtufte.com

• Example graphs, some good, some not so good: http://addictedtor.
free.fr/graphiques/

• Other examples or essays:

– http://www.dmreview.com/issues/20050101/1016296-1.html

– http://www.bella-consults.com/square-pies

http://www.math.yorku.ca/SCS/Gallery/
http://www.edwardtufte.com
http://addictedtor.free.fr/graphiques/
http://addictedtor.free.fr/graphiques/
http://www.dmreview.com/issues/20050101/1016296-1.html
http://www.bella-consults.com/square-pies
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Chapter 12

Homework for reading
graphs

12.1 Homework

Practice is absolutely critical in this class.

Groups are fine, turn in your own work. Homework is due in or before class on
Mondays.

• Section 1.4, problem 54. And critique the graph using the number of
subscribers (in 1999) for C-Band and Primestar.

Note that you may email homework. However, I don’t use MicrosoftTM products
(e.g. Word), and software packages are notoriously finicky about translating
mathematics.

If you’re typing it (which I advise just for practice in whatever tools you use),
you likely want to turn in a printout. If you do want to email your submission,
please produce a PDF or PostScript document.
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Chapter 13

Notes for the third week:
set theory

Notes also available as PDF.

13.1 Language of set theory

• We will cover just enough set theory to use later.

• Cardinalities are important for probability. We don’t have time to cover
probability sufficiently well, so we will not explore the sizes of sets deeply.

• This is known as näıve set theory. We do not define absolutely everything,
nor do we push set theory’s logical limits. Much.

Goals:

• Impart some of the language necessary for later chapters.

• Practice reasoning in a formal setting.

– One key aspect is what to do in extreme cases like empty sets.

• Set up straight-forward examples for logic.

13.2 Basic definitions

To start, we require unambiguous definitions of terms and items. When a term
or item is unambiguously defined, it is called well-defined.

set An unordered collection of unique elements.
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• Curly braces: {A,B,C} is a set of three elements, A, B, and C.

• Order does not matter: {cat,dog} is the same set as {dog, cat}.

• Repeated elements do not matter: {1, 1, 1} is the same set as {1}.

• Can be implicit : {x |x is an integer, x > 0, x < 3} is the same set as
{1, 2}.

• Read the implicit form as “the set of elements x such that x is an
integer, x > 0, and x < 3”. Or “the set of elements x where . . .”

• Other symbols that sometimes stand for “such that”: :, 3 (reversed
∈)

• Implicit (or set-builder) form can include formula or other bits left of
the bar. {3x |x is a positive integer} is the set {3, 6, 9, . . .}.

element Any item in a set, even other sets. (Also entry, member, item, etc.)

• This is not ambiguous. If something is in a set, it is an item of that
set. It doesn’t matter if the item is a number or a grape.

• {A, {B,C}} is a set of two elements, A and {B,C}.

• None of the following are the same: {A, {B,C}}, {A,B,C}, {{A,B}, C}.

empty set Or null set. Denoted by ∅ rather than {}.

• This is a set on its own.

• {∅} is the set of the empty set, which is not empty.

• Think of sets as bags. An empty bag still is a bag, and if a bag
contains an empty bag, the outer bag is not empty.

• Implicit definitions can hide empty sets.

• For example, the set {x |x is an odd integer divisible by 2} is ∅.

singleton A set with only one element.

• {1} and {∅} both are singletons (or sometimes singleton sets).

13.3 Translating sets into (and from) English

From English:

• The days of the week:

– {Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday}
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– Of course, we’re using a representation of the days and not the days
themselves. That is how we reason about things; we model them and
represent them by symbols.

• The days when homework is due:

– {25th of August, 1st of September, . . .}

– We could list them all.

– { every Monday after the 18th of August 2008 until after the 1st of
December }

– Or: {x |x is a Monday, x is after the 18th of August, and x is on or
before the 1st of December }

To English:

• {2, 3, 4}:

– The set containing two, three, and four.

• {x |x is an integer and x > 0}:

– The positive integers, also called the counting numbers or the natural
numbers.

– Often written as J+. The integers often are written as J (because the
“I” form can be difficult to read), rationals as Q (for quotients), the
reals as R.

• {2x− 1 |x ∈ J+}

– The set whose members have the form 2x− 1 where x is a positive
integer.

– Cannot list all the entries; this is an infinite set.

– Here, the odd integers.

13.4 Relations

element of The expression x ∈ A states that x is an element of A. If x /∈ A,
then x is not an element of A.

• 4 ∈ {2, 4, 6}, and 4 /∈ {x |x is an odd integer }.

• There is no x such that x ∈ ∅, so {x |x ∈ ∅} is a long way of writing
∅.

subset If all entries of set A also are in set B, A is a subset of B.
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superset The reverse of subset. If all entries of set B also are in set A, then A
is a superset of B.

proper subset If all entries of set A also are in set B, but some entries of B
are not in A, then A is a proper subset of B.

• {2, 3} is a proper subset of {1, 2, 3, 4}.

equality Set A equals set B when A is a subset of B and B is a subset of A.

• Order does not matter. {1, 2, 3} = {3, 2, 1}.

The symbols for these relations are subject to a little disagreement.

• Many basic textbooks write the subset relation as ⊆, so A ⊆ B when A
is a subset of B. The same textbooks reserve ⊂ for the proper subset.
Supersets are ⊃.

• This keeps a superficial similarity to the numerical relations ≤ and <. In
the former the compared quantities may be equal, while in the latter they
must be different.

• Most mathematicians now use ⊂ for any subset. If a property requires
a “proper subset”, it often is worth noting specifically. And the only
non-“proper subset” of a set is the set itself.

• Extra relations are given for emphasis, e.g. ( or $ for proper subsets and
⊆ or j to emphasize the possibility of equality.

• Often a proper subset is written out: A ⊂ B and A 6= B.

• I’ll never remember to stick with the textbook’s notation. My
use of ⊂ is for subsets and not proper subsets.

13.5 Translating relations into (and from) En-
glish

From English:

• The train has a caboose.

– It’s reasonable to think of a train as a set of cars (they can be
reordered).

– The cars are the members.

– Hence, caboose ∈ train

• The VI volleyball team consists of VI students.

– VI volleyball team ⊂ VI students
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• There are no pink elephants.

– pink elephants = ∅

To English:

• x ∈ today’s homework set.

– x is a problem in today’s homework set.

• Today’s homework ⊂ this week’s homework.

– Today’s homework is a subset of this week’s homework.

13.6 Consequences of the set relation definitions

Every set is a subset of itself. Expected.

If A = B, then every member of A is a member of B, and every
member of B is a member of A. This is what we expect from equality, but
we did not define set equality this way. Follow the rules:

• A = B imples A ⊂ B and B ⊂ A.

• Because A ⊂ B, every member of A is a member of B.

• Because B ⊂ A, every member of B is a member of A.

The empty set ∅ is a subset of all sets. Unexpected! This is a case of
carrying the formal logic to its only consistent end.

• For some set A, ∅ ⊂ A if every member of ∅ is in A.

• But ∅ has no members.

• Thus all of ∅’s members also are in A.

• This is called a vacuous truth.

The alternatives would not be consistent, but proving that requires more ma-
chinery that we need.

13.7 Visualizing two or three sets: Venn dia-
grams

Also known as Venn diagrams.

yes, at some point I will draw some and stick them in the notes.
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13.8 Operations

union The union of two sets A and B, denoted by A ∪B, is the set consisting
of all elements from A and B.

• A ∪B = {x |x ∈ A or x ∈ B}.

• Remember repeated elements do not matter: {1, 2}∪{2, 3} = {1, 2, 3}.

intersection The intersection of two sets A and B, denoted A ∩B, is the set
consisting of all elements that are in both A and B.

• A ∩B = {x |x ∈ A and x ∈ B}.

• {1, 2} ∩ {2, 3} = {2}.

• {1, 2} ∩ {3, 4} = {} = ∅.

set difference The set difference of two sets A and B, written A \ B, is the
set of entries of A that are not entries of B.

• A \B = {x |x ∈ A and x 6∈ B}.

• Sometimes written as A−B, but that often becomes confusing.

If A and B share no entries, they are called disjoint. One surprising consequence
is that every set A has a subset disjoint to the set A itself.

• No sets (not even ∅) can share elements with ∅ because ∅ has no elements.

• So all sets are disjoint with ∅.

• The empty set ∅ is a subset of all sets.

• So all sets are disjoint with at least one of their subsets!

Can any other subset be disjoint with its superset? No.

13.8.1 Similarities to arithmetic

Properties of arithmetic:

commutative a+ b = b+ a, a · b = b · a

associative a+ (b+ c) = (a+ b) + c, a(bc) = (ab)c

distributive a(b+ c) = ab+ ac

Which of these apply to set operations union and intersection? (Informally.
Formally we must rely on the properties of and and or.)

If C = A∪B, then C = {x |x ∈ A or x ∈ B}. Reversing the sets does not matter,
so C = A∪B = B∪A. The union is commutative. Similary, if D = A∪(B∪C),
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we can write D in an implicit form and see that D = (A ∪ B) ∪ C to see that
the union is associative.

The same arguments show that set intersection is commutative and associa-
tive.

For the distributive property, which is similar to addition and which to multipli-
cation? A gut feeling is that unions add, so try it.

A ∩ (B ∪ C) = {x |x ∈ A and x ∈ B ∪ C}
= {x |x ∈ A and (x ∈ B or x ∈ C)}
= {x | (x ∈ A and x ∈ B) or (x ∈ A and x ∈ C)}
= (A ∩B) ∪ (A ∩ C)

But with sets, both operations distribute:

A ∪ (B ∩ C) = {x |x ∈ A or x ∈ B ∩ C}
= {x |x ∈ A or (x ∈ B and x ∈ C)}
= {x | (x ∈ A or x ∈ B) and (x ∈ A or x ∈ C)}
= (A ∪B) ∩ (A ∪ C)

The rules of set theory are intimately tied to logic. Logical operations dictate
how set operations behave. We will cover the properties of logic in the next
chapter.

13.9 Translating operations into English

To English:

• (A ∪B) ∩ C

– The set consisting of members that are in C and either of A or B.

• (A ∩B) ∪ C

– The set consisting of members that are in C or in both of A or B.

13.10 Special operations

The complement and cross-product operations require extra definitions.
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13.10.1 Universes and complements

universe A master set containing all the other sets in the current context.

complement The complement of a set A is the set of all elements in a specified
universal set U that are not in A.

• Ac = {x |x 6∈ A and x ∈ U} = U −A.

• Sometimes written as A′ or Ā.

• It’s not always necessary to define a universal set.

• And there is no “universal” universal set.

• Because Ac = U \A, many people avoid the complement completely.

• The complement is useful to avoid writing many repeated U \A operations
that share the same universal set.

13.10.2 Tuples and cross products

tuple An ordered collection of elements, (A,B,C).

• When only two elements, this is an ordered pair.

• Think of coordinates in a graph, (x, y).

• So (x, y) 6= (y, x) in general (i.e. when x 6= y).

cross product A set of all ordered pairs whose entries are drawn from two
sets.

• A×B = {(x, y) |x ∈ A, y ∈ B}.

Let A = {a1, a2} and B = {b1, b2}.

Then A×B = {(a1, b1), (a1, b2), (a2, b1), (a2, b2)} and
B×A = {(b1, a1), (b1, a2), (b2, a1), (b2, a2)}. Because (a1, b1) 6= (b1, a1) in general,
A×B 6= B ×A in general.

When does A×B = B ×A?

13.11 Cardinality and the power set

cardinality The cardinality of a set A is the number of elements in A. Often
written as |A|. The text uses n(A).

• If A = {1, 2, 3}, then |A| = 3.

• What is |∅|? 0.
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power set The power set of a set A is the set of all subsets of A.

• Often denoted as P(A), but this is used rarely enough that the
notation always needs defined.

What is the cardinality of the power set of A?

• What is cardinality of the power set of ∅?

– All sets are subsets of themselves, and the empty set is a subset of
itself.

– Then P(∅) = {∅}, and |P| = |{∅}| = 1.

• What is the powerset of a set with one element, let’s say {1}?

– There are two subsets, ∅ and the set itself {1}.

– P({1}) = {∅, {1}}, and |P({1})| = 2.

• Two elements, say {1, 2}?

– P({1, 2}) = {∅, {1}, {2}, {1, 2}}.

– |P({1, 2})| = 4.

• So the powerset with zero entries has size 1, one entry has size 2, two has
size 4, . . .

What is the cardinality of A ∪B?

• Sets do not contain repeated members, so the union cannot be simply the
sum of its arguments.

• The intersection contains one copy of all the shared members.

• So to count every item once the cardinality of the union is the sum of the
cardinalities of the sets minus the cardinality of the intersection.

• |A ∪B| = |A|+ |B| − |A ∩B|.

• Known as the inclusion-exclusion principle.

• Extends to more sets, but you must be careful about counting entries once!

– |A∪B∪C| = |A|+ |B|+ |C|−|A∩B|−|B∩C|−|A∩C|+ |A∩B∩C|.
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Chapter 14

Homework for the third
week: set theory

14.1 Homework

Practice is absolutely critical in this class.

Groups are fine, turn in your own work. Homework is due in or before class on
Mondays.

Most of these problems are purely mechanical. This is less work than
it appears.

• Section 2.1:

– Problems 1-8

– Problems 11 and 17

– Problems 30 and 32

– Problems 62, 63, and 66

– Problems 68, 71, 74, and 78

– Problem 92

• Section 2.2:

– Problems 8, 10, 12, 14

– Even problems 24-34, using the text ’s definitions of subset and proper
subset

• Section 2.3:
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– Problems 1-6

– Problems 10, 17, 18, 23, 24

– Problem 31

– Problem 33, rephrase using complements with respect to the common
“universal” set A ∪B ∪ C.

– Problems 61, 62

– Problems 72, 73

– Problems 117, 118, 121-124

Note that you may email homework. However, I don’t use MicrosoftTM products
(e.g. Word), and software packages are notoriously finicky about translating
mathematics.

If you’re typing it (which I advise just for practice in whatever tools you use),
you likely want to turn in a printout. If you do want to email your submission,
please produce a PDF or PostScript document.



Chapter 15

Solutions for third week’s
assignments

Also available as PDF.

15.1 Section 1.4, problem 54

According to the percentages, Primestar has 16% of 12 million or 1.92 million. C-
Band then has 15% or 1.8 million. Primestar has 120 thousand more subscribers.

However, the slices appear of drastically different sizes. I suspect the satellite
dish is tilted “upwards” like a real dish, distorting the slices’ areas.

15.2 Section 2.1

15.2.1 Problems 1-8

1. C

2. G

3. E

4. A

5. None of the above! They meant B, but 1 = 20 is a positive integer and a
power of two. The authors meant “two raised to the power of each of the
five least positive integers”. I hadn’t realized this at first, or else I would
not have given this one.
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6. D

7. H

8. F

15.2.2 Problems 11 and 17

11. {0, 1, 2, 3, 4}
17. {2, 4, 8, 16, 32, 64, 128, 256}

15.2.3 Problems 30 and 32

30. {x|x is an even natural number} is a direct translation, but {2x|x ∈ J+} is
shorter. Another possibility is {x|x > 0, x is an even integer}.
32. One form is {35 + 5i|i ∈ J, 0 ≤ i ≤ 12}.

15.2.4 Problems 62, 63, and 66

62. −12 /∈ {3, 8, 12, 18}.
63. 0 ∈ {−2, 0, 5, 9}.
66. {6} /∈ {3, 4, 5, 6, 7}. But note that {6} ⊂ {3, 4, 5, 6, 7}.

15.2.5 Problems 68, 71, 74, and 78

68. false
71. true
74. true
78. true (assuming a typical meaning for “. . .”)

15.2.6 Problem 92

Part a. Three chocolate bars are contain a total of 660 calories. The point of
this exercise is to ensure you recognize that sets are unordered, so {r, s} = {s, r}
and you only include it once. The list is as follows: {r}, {r, s}, {r, c}, {r, g},
{r, v}, {s, c}, and {s, g}.

Part b. Five bars is 1100 calories. The list is {r, s, v}, {r, s, g}, {r, s, c}, {r, c, v},
{r, c, g}, and {r, g, v}.
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15.3 Section 2.2

15.3.1 Problems 8, 10, 12, 14

8. {M,W,F} 6⊂ {S,M, T,W, Th}.
10. {a,n,d} ⊂ {r, a,n,d, y}.
12. ∅ ⊂ ∅.
14. {2, 1/3, 5/9} ⊂ Q.

15.3.2 Even problems 24-34

24. true
26. false
28. false
30. true
32. false
34. false

15.4 Section 2.3

15.4.1 Problems 1-6

1. B

2. F

3. A

4. C

5. E

6. D

15.4.2 Problems 10, 17, 18, 23, 24

10. Y ∩ Z = {b, c}.
17. X ∪ (Y ∩ Z) = {a, b, c, e, g}.
18. Y ∩ (X ∪ Z) = {a, b, c} = Y because Y ⊂ X ∪ Z.
23. X \ Y = {e, g}.
24. Y \X = {b}.
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15.4.3 Problem 31

The set consisting of all the elements of A along with those elements of C that
are not in B.

15.4.4 Problem 33

The set consisting of elements in A but not in C as well as elements in B but
not in C. If we consider the union of A, B, and C to be the universal set, then
this is the set of all elements in A complement along with all elements in B
complement.

15.4.5 Problems 61, 62

61. X ∪ ∅ = X, and the conjecture is that the union of any set with the empty
set is the set itself.
62. X ∩ ∅ = ∅, and the conjecture is that the intersection of any set with the
empty set is the empty set.

15.4.6 Problems 72, 73

72. A×B = {(3, 6), (3, 8), (6, 6), (6, 8), (9, 6), (9, 8), (12, 6), (12, 8)}
B ×A = {(6, 3), (8, 3), (6, 6), (8, 6), (6, 9), (8, 9), (6, 12), (8, 12)}
73. A×B = {(d, p), (d, i), (d, g), (o, p), (o, i), (o, g), (g, p), (g, i), (g, g)}.
B×A = {(p, d), (i, d), (g, d), (p, o), (i, o), (g, o), (p, g), (i, g), (g, g)}, alas, no pigdog
in sight.

15.4.7 Problems 117, 118, 121-124

117. A \B = A implies that A ∩B = ∅.
118. B \A = A is true only when B = A = ∅.
121. If A ∪ ∅ = ∅, then A = ∅.
122. A ∩ ∅ = ∅ for any set A.
123. If A ∩ ∅ = A, then A = ∅.
124. A ∪ ∅ = A for all sets A.



Part III

Notes for chapters 4, 5, and
6
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Chapter 16

Notes for the fourth week:
symbolic logic

Notes also available as PDF.

16.1 Language of logic

Goals:

• Determine when statements are logical statements.

• Recognize and transform between equivalent logical statements.

• Negate logical statements and quantified logical statements correctly.

• Apply the logical rules of deduction and follow if-then chains formally.

We start with definitions:

logical statement A declaration that is either true or false but not both. For
example:

Today is Monday.

Languages contain many statements and declarations that are not logical
statements:

Symbolic logic is fun.

While that is a declaration, it is neither true nor false in general. An
example of a logical statement from set theory,

x ∈ A.

105



106CHAPTER 16. NOTES FOR THE FOURTH WEEK: SYMBOLIC LOGIC

negation A logical statement over the same topics that is false if the original
statement is true or true if the original is false. The statement

My dog has fleas.

has as its negation

My dog does not have fleas.

However, a statement about my cat(s) cannot be a negation of either of
the above regardless of which statements are true or false.

quantifier When a statement applies to all, some, every of something, the
statement is quantified. The word denoting how many is the quantifier.
This is where negation becomes tricky. For example, the statement

All dogs have fleas.

has as its negation

Some dogs do not have fleas.

Its negation is not

All dogs do not have fleas.

16.2 Symbolic logic

Expressing logical statements with symbols lets us focus on manipulating the
logic itself. We can talk about the dog having fleas without mentioning dogs or
fleas.

Variables like p and q can take the values true or false. Like many items, true
and false are given different symbols by different authors. Common symbols
include

true false
T F
1 0
> ⊥

I will use 1 and 0.

16.3 Logical operators and truth tables

The first operator is negation. This is a unary operation; it applies to a single
operand. Two symbols are commonly used for the negation operator, ¬ and ∼,
as is adding a bar to a variable, p. I will stick with the symbol ¬ for most cases.
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With one operand, listing all possible inputs and outputs is simple. The list is
also called a truth table. The truth table for ¬ is as follows:

p ¬p
1 0
0 1

Programming languages may represent ¬ with operators or functions like !,
not(), .NOT., not.

When and joins pieces of a logical statement, we understand that the statement
as a whole it true only if both pieces are true. This is the conjunction operator.
The conjunction operator ∧ is the symbol we use to represent the same idea.
The truth table for the ∧ operator has four lines and is as follows:

p q p ∧ q
1 1 1
1 0 0
0 1 0
0 0 0

The and operator sometimes is written as multiplication, or just pq. Most often,
that is paired with using a bar for negation, so p ∧ ¬q is written pq. This
is common notation in electrical engineering. Occasionally the negation will
be written as q′. Programming languages may represent ∧ with operators or
functions like &&, and(), .AND., and.

The English word or, however, has quite a few different meanings. Sometimes
we mean the logical exclusive-or, where one choice rules out the other, and
sometimes we mean logical or, where both choices are possible.

In symbolic logic, the disjunction operator, ∨, is the latter type of or. The
disjunction is true when either sub-clause is true:

p q p ∨ q
1 1 1
1 0 1
0 1 1
0 0 0

In electrical engineering, or often is represented by +, so p∨¬q would be written
p+ q. Programming languages may represent ∨ with operators or functions like
||, or(), .OR., or.

The exclusive-or operator, which we will denote ⊕, is true whenever exactly
one operand is true:
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p q p⊕ q
1 1 0
1 0 1
0 1 1
0 0 0

Mathematically, the symbol for the exclusive-or operator is not particularly
standardized. The symbol Y sometimes appears, as does the operator xor. We
will expand on the notation ⊕ once we discuss addition of binary numbers.

Note that ⊕ often is not considered a core operator. We can write p ⊕ q as
(p ∨ q)¬(p ∧ q).

Programming languages rarely provide ⊕ logical operators, although they often
provide exclusive-or operators on the binary representations of integers. More on
those in the next chapter. But if you notice, this is the negation of equality. So
programming languages express the logical exclusive-or by negating the equality
of two logical expressions.

In symbolic logic, equality of two logical statements is equivalence. When
expressed as an operator, equivalence takes the symbols ≡,⇔, or↔. The reason
for the arrow forms will become clear soon.

p q p ≡ q
1 1 1
1 0 0
0 1 0
0 0 1

Again, ≡ is not a core operator. p ≡ q is the same statement as (p∧q)∨(¬p∧¬q).

Programming languages represent equality with ==, =, equal?, and many other
forms.

A logical statement that always is true is a tautology. So p∨¬p is a tautology:

The sky is periwinkle or the sky is not periwinkle.

Symbolically,
|= p ∨ ¬p.

A statement that always is false is a contradiction. Here p ∧ ¬p is an example:

The sky is blue and the sky is not blue.

A statement that is neither always true nor always false is logically contingent.
So pq is contingent on the values of p and q.

We use the symbol for tautology, |=, to make certain equivalence statements
unambiguous. Because we defined ≡ as an operator above, the plain statement

p ∨ q ≡ q ∨ p
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appears contingent on its values. By adding |=, we make it clear that we are
asserting that the statement is always true. To state that p ∨ q is the same as
q ∨ p, we say

|= p ∨ q ≡ q ∨ p.

16.4 Properties of logical operators

Three properties from arithmetic also hold for the core logical operators ∧ and
∨:

commutative In language, and and or are commutative, or p and q is the
same as q and p. Symbolically, |= p ∧ q ≡ q ∧ p and |= p ∨ q ≡ q ∨ p.

associative Again, linguistically we don’t use parenthesis. Run-on statements
are just as true or false as well-structured ones, so we expect and and or to
be associative. We could build a large truth table to verify this, but for now
let us just state that |= (p∧q)∧r ≡ p∧(q∧r) and |= (p∨q)∨r ≡ p∨(q∨r).

distributive As with sets, both operations distribute over the other. So p ∧
(q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) and p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).

As a demonstration of using a truth table to show equivalence,

p q r q ∨ r p ∧ (q ∨ r) p ∧ q p ∧ r (p ∧ q) ∨ (p ∧ r)
1 1 1 1 1 1 1 1
1 1 0 1 1 1 0 1
1 0 1 1 1 0 1 1
1 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0

Which of these hold for ⊕ and≡? Over which operations may each be distributed?

16.5 Truth tables and logical expressions

16.5.1 De Morgan’s laws

As an example of truth tables and a demonstration of some very useful logical
laws, we examine De Morgan’s laws.

In arithmetic, we know that −(1 + 2) = −1 +−2. Logical operations are similar
to arithmetic, but not that similar.
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We could reason about the two rules, but they serve as succinct examples of
truth tables.

• ¬(p ∨ q) ≡ ¬p ∧ ¬q:

p q ¬p ¬q ¬p ∧ ¬q p ∨ q ¬(p ∨ q)
1 1 0 0 0 1 0
1 0 0 1 1 0 1
0 1 1 0 1 0 1
0 0 1 1 1 0 1

• ¬(p ∧ q) ≡ ¬p ∨ ¬q:

p q ¬p ¬q ¬p ∨ ¬q p ∧ q ¬(p ∧ q)
1 1 0 0 0 1 0
1 0 0 1 0 1 0
0 1 1 0 0 1 0
0 0 1 1 1 0 1

16.5.2 Logical expressions from truth tables

Say we are provided with a truth table showing all possible values for an
unknown logical statement f(p, q). From that truth table, we can construct a
logical statement equivalent to f(p, q).

Take:

p q f(p, q)

1 1 0
1 0 1
0 1 0
0 0 1

To construct f , we can combine all the true outputs with ∨. The terms to be
combined are the ∧ of all the variables. In each ∧ expression, each variable is
negated to make its value true.

So in the above table, there are two true entries. One has p ≡ 1 and q ≡ 0, while
the other has p ≡ 0 and q ≡ 0. The two corresponding ∧-statements are p ∧ ¬q
and ¬p ∧ ¬q. So an equivalent statement is

|= f(p, q) ≡ (p ∧ ¬q) ∨ (¬p ∧ ¬q).

Alternately, we can list the false entries and combine their negations. This
provides another equivalent statement,

|= f(p, q) ≡ ¬ ((p ∧ q) ∨ (¬p ∧ ¬q)) .
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We can use De Morgan’s laws to show these are the same:

|= ¬((p ∧ q) ∨ (¬p ∧ ¬q)) ≡ ¬(p ∧ q) ∧ ¬(¬p ∧ ¬q)
≡ (¬p ∨ ¬q) ∧ (p ∨ q)

Neither of these are the simplest possible expression, but each is equivalent to
f(p, q) and is constructed by a straight-forward recipe.

To simplify this expression, we use the distributive property and the fact that
|= p ∨ ¬p,

|= f(p, q) ≡ (p ∧ ¬q) ∨ (¬p ∧ ¬q)
≡ (p ∨ ¬p) ∧ ¬q
≡ 1 ∧ ¬q
≡ ¬q.

There is another method for simplifying expressions which we will not cover. If
you are interested in a more visual method for simplifying expressions over a few
variables, look up Veitch charts or Karnaugh maps from electrical engineering.
With those forms, you draw a 2-d truth table and cover the true values with
boxes of area 2k. This mechanism is particularly useful when you have don’t
care values, places where the output value does not matter.

16.6 Conditionals

16.6.1 English and the operator →

One (compound) operator we have not mentioned so far is the conditional, the
symbolic form of an if-then rule. A statement like

If the sky is blue, then it is not raining.

is translated to
the sky is blue→ it is not raining,

or p→ q using only symbols. Here p is the antecedent and q is the consequent.

Many English statements are forms of conditionals. For example,

• It is not raining when the sky is blue.

• Rain does not fall from a blue sky.

• A blue sky implies no rain.

• A blue sky is sufficient for it not to be raining.

• Not raining is necessary for a blue sky.

http://en.wikipedia.org/wiki/Karnaugh_map
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Many forms:

• If p, then q.

• p implies q.

• p only if q.

• p is sufficient for q.

• q is necessary for p.

• q if p.

The two in bold are very important in mathematics and science because they
are very, very common and often read incorrectly. Sufficient follows the arrow
in p→ q, and necessary works backward. We will see why when we examine the
appropriate truth table.

Colloquially, we can refer to p as a premise or hypothesis and q as a conclusion.
However, we will stop using those terms when we discuss logical deduction.
Identifying p as a premise is useful for reasoning about p→ q, but it introduces
ambiguity when we consider→ as an operator. Just like with |= and ≡, additional
symbols provide the appropriate context.

16.6.2 Defining p→ q

The truth table defining the conditional → is slightly surprising:

p q p→ q

1 1 1
1 0 0
0 1 1
0 0 1

The first and last lines are expected. When truth implies truth or falsity implies
falsity, the statement as a whole is true.

The second line also is expected. A true premise implying a false conclusion
renders the statement false.

Now comes the surprise. A false hypothesis implying a true conclusion renders
the statement as a whole true! This is only surprising because we are looking at
one line at a time. Consider the general case where the premise is false. If you
start reasoning from a false hypothesis, what is the result? Anything. So any
time p is false, the statement as a whole is true.
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We can break the conditional operator into core operators by listing the single
negated output and applying De Morgan’s laws:

|= p→ q ≡ ¬(p ∧ ¬q)
≡ ¬p ∨ q.

So p→ q is a true statement whenever the conclusion q is true or when we start
from a false premise and 6= p is true.

16.6.3 Converse, inverse, and contrapositive

Considering a few rules from arithmetic, we see that→ is not commutative! The
form q → p is the converse of p→ q, but the two statements are not equivalent.
Similarly, we cannot simply negate terms to obtain the negation, so ¬(p→ q)
is not the same as the inverse ¬p→ ¬q. There is one other form here that is
equivalent. The contrapositive ¬q → ¬q is equivalent to p→ q.

converse: inverse: contrapositive
p q p→ q q → p ¬p→ ¬q ¬q → ¬p
1 1 1 1 1 1
1 0 0 1 1 1
0 1 1 0 0 0
0 0 1 1 1 1

16.6.4 If and only if, or ↔

One more form of the conditional is important because it is so frequently used,
the phrase if and only if.

p if and only if q is a double conditional or biconditional. It means p→ q∧q → p
and is written symbolically as p↔ q. In text, if and only if often is abbreviated
as iff.

Looking at its truth table, we see that ↔ is the same as equivalence:

p q p→ q q → p p↔ q

1 1 1 1 1
1 0 0 1 0
0 1 1 0 0
0 0 1 1 1

Which symbol you use is a matter of preference and emphasis.
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16.7 Quantifiers

We are interested in two quantifiers for logical statements: for all and there exists.
These are universal and existential quantifiers, respectively. To demonstrate
these, I’m going to switch to predicate logic. Here properties have parameters,
and the quantifiers describe possible values for those parameters. There is a
third common quantifier, the uniqueness quantifier, but we will not explore it.

Say Dexter has fleas (which he doesn’t). So far, we would simply associate this
statement with a single variable. But to examine quantifiers, we need a bit more.

Let P (p) be the property of having fleas. This P (Dexter) is a (false) statement
that Dexter has fleas. We can generalize this to state that ∃p ∈ D : P (p) where
D is the set of dogs. If p is Dexter, then P (p) would be stating that Dexter
has fleas, so there does exist such a p. The colon (:) is read as “such that”
or “satisfies” and sometimes is replaced by a vertical bar | or the backwards
epsilon-ish symbol 3.

But Dexter does not have fleas, so in reality ∃p ∈ D : ¬P (p). Because Dexter
is a dog, we know not all dogs have fleas. So ∃p ∈ D : ¬P (p) is the same as
¬∀p ∈ D : P (p).

Translating to and from English needs attention to detail. The word always does
not always translate into ∀. Some translations:

P (p) is always true. ∀p : P (p).
P (p) is almost always true. ∃p : ¬P (p).
There always is some way for P (p) to be true. ∃p : P (p)
Sometimes P (p). ∃p : P (p).

And here are the reasons why we care about formalizing quantifiers in this class:
Negation is tricky, and composing or nesting quantifiers is tricky.

16.7.1 Negating quantifiers

Symbolically, two rules apply:

• ¬(∀p : P (p)) is the same as ∃p : ¬P (p), and

• ¬(∃p : P (p)) is the same as ∀p : ¬P (p).

Reading the first aloud,

Stating that not all p satisfy P (p) is the same as saying there exists
some p that satisfies ¬P (p).

And the second,

Stating that there does not exist a p such that P (p) is the same as
saying that all p satisfy ¬P (p).
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16.7.2 Nesting quantifiers

One other item to note: Different quantifiers are not operators, hence you
cannot assume they commute! Quantifiers nest. As an example, consider two
statements:

All homework questions have been answered by at least one student.
Some student has answered all homework problems.

Translating the first (true) statement into a symbolic form gives

∀q ∈ questions∃s ∈ students : s answered q.

The second (false) statement becomes

∃s ∈ students ∀q ∈ questions : s answered q.

The symbolic versions appear similar. The only difference is the order of the
quantifiers. But the statements obviously have very different meanings.

The text gives a nice visual interpretation in Section 3.5 using diagrams akin to
Venn diagrams from set theory. Here we consider a more syntactic approach.

Given the English and logic statements:

All homework questions have been answered by at least one student.
∀q ∈ questions∃s ∈ students : s answered q.

You can read the latter as the former, or as

For all questions, there is some student who has answered that
question.

Which student is meant depends on which question is considered.

Now consider the other statement:

Some student has answered all homework problems.
∃s ∈ students ∀q ∈ questions : s answered q.

Here the questions answered depends on which student is considered. And this
statement says that one student has answered all questions.

For a more formal example, you read ∀p ∈ J+∃q ∈ J+ : p < q as

For all positive integers p there exists a positive integer q such that
p > q.

The particular q depends on the p. There is not be a single q that works for all
positive integers p. This statement is true over the integers.

Swapping the quantified statements produces a false statement. The translation
of ∃q ∈ J+∀p ∈ J+ : p < q is
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There exists a positive integer q such that for all positive integers p,
p < q.

There is no such integer, as q = q and thus q 6< q.

So we cannot simply swap quantifiers.

16.7.3 Combining nesting with negation

How do we negate the following true and equivalent English and logic statements?

All homework questions have been answered by at least one person.
∀q ∈ questions ∃s ∈ students : s answered q.

Consider working symbolically with the rules we already established:

¬(∀q ∈questions ∃s ∈ students : s answered q)
≡ ∃q ∈ questions¬(∃s ∈ students : s answered q)
≡ ∃q ∈ questions∀s ∈ students : ¬(s answered q)
≡ ∃q ∈ questions∀s ∈ students : s has not answered q.

So the negation is

There exists a question such that for all students the student has not
answered the question.

Equivalently,

There is some question where no student has answered that question.

Is this the same as just sticking a not in front of the original sentence?

Not all homework questions have been answered by at least one
person.

In this case, yes. But the other statement is not as simple.

Now consider the other statement:

Some student has answered all homework problems.
∃s ∈ students ∀q ∈ questions : s answered q.

Does the statement

Not some student has answered all homework problems.

mean anything? Not really. So how can we negate this statement correctly?
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Work with the symbolic form. Then

|= ¬(∃s ∈students ∀q ∈ questions : s answered q)
≡ ∀s ∈ students¬(∀q ∈ questions : s answered q)
≡ ∀s ∈ students ∃q ∈ questions : ¬(s answered q)
≡ ∀s ∈ students ∃q ∈ questions : s has not answered q.

So a correct negation is

For all students, there is some question that student did not answer.

16.8 Logical deduction: Delayed until after the
test

Now that we have if-then statements, we can speak more about logical deduction.
And the simplest level, we can chain → operators to show deduction. But then
we end up with statements like ((p→ q) ∧ (q → r) ∧ ¬r)→ ((p→ r) ∧ ¬r)→ p.
These become unreadable quickly.

Instead, we introduce new symbols. The above could be written as p→ q, q →
r,¬r ` p→ r,¬r ` p. Taking up more room but being more clear, we can write
the logical argument or logical deduction as

p→ q
q → r
¬r
` p→ r
¬r
` ¬p

The general form in one line: Premise 1, premise 2 ` conclusion. In table form,

Premise 1
Premise 2

` Conclusion.

Both are read as assuming premise one and premise two, infer the conclusion or
premise one and premise two entail the conclusion.

The ` symbol is syntactic sugar meant to place emphasis where important. p ` q
is the same as ` p→ q or just p→ q, but the former implies a deduction while
the latter appears to be just a statement.

Sometimes three dots, ∴, is used instead of `. And sometimes (as in the text)
neither appears in the tabular form. However, symbolic logic is about removing
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ambiguity that comes from language. Using the symbol helps disambiguate valid
logical arguments from examples of invalid arguments or fallacies.

When reasoning about reasoning itself, the set of premises in a rule often are
represented by Γ, so Γ ` q is a rule with a set of premises Γ leading to a single
result q.

Some forms or structures of logical arguments have classical names. These names
came long before the symbolic form.

Modus ponens p→ q, p ` q, or

p→ q
p

` q

Modus tollens p→ q,¬q ` ¬p, or

p→ q
¬q
` ¬p

Disjunctive syllogism p ∨ q,¬p ` q, or

p ∨ q
¬p
` q

Hypothetical syllogism (also called transitivity) p→ q, q → r ` p→ r, or

p→ q
q → r

` p→ r

We also can write De Morgan’s laws as laws of deduction, for example ¬(p∨ q) `
¬p ∧ ¬q, or

¬(p ∨ q)
` ¬p ∧ ¬q .

Much of the reason why we care about the correct rules of deduction is to
highlight incorrect rules, or logical fallacies. A list of a few common fallacies
follows. Note that we include a symbol after the line in the tabular form; the
negation of implication, 0, lets you know we are talking about fallacies. The
text does not use any symbol, so you may end up seeing these fallacies as valid.

Fallacy of the converse Given p → q and q, we cannot deduce p. Symboli-
cally, p→ q, q 0 p or



16.8. LOGICAL DEDUCTION: DELAYED UNTIL AFTER THE TEST 119

p→ q
q

0 p .

Fallacy of the inverse Given p→ q and ¬p, we cannot deduce ¬q. Symboli-
cally, p→ q,¬p 0 ¬q or

p→ q
¬p
0 ¬q .

Fallacy of the alternative disjunct Given p∨ q and p, we cannot deduce ¬q.
Symbolically, p ∨ q, p 0 ¬q or

p ∨ q
p

0 ¬q .

With the exclusive-or operator ⊕, we can conclude that only one disjunct
is chosen. But the or operator ∨ allows both to occur at once.
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Chapter 17

Homework for the fourth
week: symbolic logic

17.1 Homework

Practice is absolutely critical in this class.

Groups are fine, turn in your own work. Homework is due in or before class on
Mondays.

• Section 3.1

– Problems 1-5

– Problems 40, 42, 44

– Problems 49-54

• Section 3.2

– Problems 15-18

– Problems 37-40

– Problems 53-55

– Problems 61, 62

• Section 3.3

– Problems 1-5

– Problems 13, 15, 20

– Problems 35-38

121
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– Problems 58, 60

– Problems 67, 68

– Problems 74, 75

• Section 3.4

– Problems 1, 3, 6

– Problem 51, 57, 58

• Section 3.1 again

– Problems 55, 56

– Problems 60-64

– Problem 75

– Problem 76. Hint: Quantifiers do not necessarily exclude each other.

• Negate the following, and decide if the statements are true or false.

– There is a number p for all numbers q such that the difference between
p and q is 2.

– For all sets A, for all sets B, there is a set C such that A ∩ B = C
and C is not ∅.

• Derive a logic expression from the following truth table. Attempt to
simplify it remembering the distributive property, De Morgan’s laws, and
that |= z ∨ ¬z ≡ 1 and |= z ∧ ¬z ≡ 0.

p q r f(p, q, r)

1 1 1 1
1 1 0 0
1 0 1 1
1 0 0 1
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0

• Section 3.6: Delayed until after the test week.

– Problems 3, 6

– Problems 17, 19, 21

– Problems 47, 49

Note that you may email homework. However, I don’t use MicrosoftTM products
(e.g. Word), and software packages are notoriously finicky about translating
mathematics.
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If you’re typing it (which I advise just for practice in whatever tools you use),
you likely want to turn in a printout. If you do want to email your submission,
please produce a PDF or PostScript document.
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Chapter 18

Solutions for fourth week’s
assignments

Also available as PDF.

18.1 Section 3.1

18.1.1 Problems 1-5

1. Logical statement: there is enough data to verify the statement.

2. Logical statement: again, there is enough data.

3. Not a logical statement: rhetorical, not logical.

4. Not a logical statement: this is a directive and not a statement.

5. Logical statement: verifiable.

18.1.2 Problems 40, 42, 44

40. He is not 48 years old.

42. She has green eyes, he is 48 years old, or both.

44. She has green eyes and he is not 48 years old.

125
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18.1.3 Problems 49-54

49. p ∧ ¬q

50. ¬p ∨ ¬q

51. ¬p ∨ q

52. q ∧ ¬p

53. ¬(p ∨ q)

54. (p ∨ q) ∧ ¬(p ∧ q)

18.2 Section 3.2

18.2.1 Problems 15-18

15. |= ¬(0 ∧ ¬1) ≡ ¬(0 ∧ 0) ≡ ¬0 ≡ 1.

16. |= ¬(¬0 ∨ ¬1) ≡ ¬(1 ∨ 0) ≡ ¬1 ≡ 0.

17. |= ¬ [¬0 ∧ (¬1 ∨ 0)] ≡ ¬(1 ∧ 0) ≡ ¬0 ≡ 1.

18. |= ¬ [(¬0 ∧ ¬1) ∨ ¬1] ≡ ¬(0 ∨ 0) ≡ 1.

18.2.2 Problems 37-40

37. Two variables, so 22 = 4 rows.

38. Three variables, 23 = 8 rows.

39. Four variables, 24 = 16 rows.

40. Five variables, 25 = 32 rows.

18.2.3 Problems 53-55

53.

p q p ∨ ¬q p ∧ q (p ∨ ¬q) ∧ (p ∧ q)
1 1 1 1 1
1 0 1 0 0
0 1 0 0 0
0 0 1 0 0

54.
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p q ¬p ∧ ¬q ¬p ∨ q (¬p ∧ ¬q) ∨ (¬p ∨ q)
1 1 0 1 1
1 0 0 0 0
0 1 0 1 1
0 0 1 1 1

55.

p q r ¬p ∧ q (¬p ∧ q) ∧ r
1 1 1 0 0
1 1 0 0 0
1 0 1 0 0
1 0 0 0 0
0 1 1 1 1
0 1 0 1 0
0 0 1 0 0
0 0 0 0 0

18.2.4 Problems 61, 62

61. Symbolically, the statement is p ∨ q. So the negation is ¬(p ∨ q) ≡ ¬p ∧ ¬q.
Back into English: You cannot pay me now and you cannot pay me later.

62. Again, the statement is ¬p ∨ q and its negation is p ∧ ¬q. In English: I am
going and she is not going.

18.3 Section 3.3

18.3.1 Problems 1-5

1. If it is breathing, then it must be alive.

2. If you see it on the Internet, then you can believe it.

3. If it is summer, then Lorri Morgan visits Hawaii.

4. If the number is Tom Shaffer’s area code, then the number is 216.

(Alternate from homeworks : If the area code is 216, then it is Tom Shaffer’s.
This is another reasonable interpretation. As is: If you are Tom Shaffer,
then your area code is 216.)

5. If it is a picture, then it tells a story.
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18.3.2 Problems 13, 15, 20

13. If q is false, then the statement leads from a false premise and must be true.
So assume q really is true. Then the validity of the statement depends on
(p ∧ q)→ q being true.

The clause p ∧ 1 simplifies, leading to p→ 1. From the truth table, we see
that the value of p does not matter and the result always is true. So the
statement is true.

15. The truth table for an if-then rule or conditional→ has one false entry. The
negation of the conditional thus has only one true entry and so is not a
conditional itself. So the statement is false.

20. From a false hypothesis, anything can follow. The statement is true.

18.3.3 Problems 35-38

35. ¬b→ ¬r

36. p→ ¬r

37. b ∨ (p→ r)

38. p ∧ (r → ¬b)

18.3.4 Problems 58, 60

58.

p q ¬q → ¬p (¬q → ¬p)→ ¬q
1 1 1 0
1 0 0 1
0 1 1 0
0 0 1 1

60.

p q p ∧ q p ∨ q (p ∧ q)→ (p ∨ q)
1 1 1 1 1
1 0 0 1 0
0 1 0 1 0
0 0 0 0 1

18.3.5 Problems 67, 68

67. That is an authentic Persian rug and I am not surprised.
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68. Ella reaches that note and she does not shatter glass.

Quick note on Problem 67. Authentic Persian rugs and other rugs from that
region must have flaws in the design. That is a religious requirement. And you
can tell if it’s hand-made by checking the seams near the edges. If the seams are
too small, the rug was machine-made.

18.3.6 Problems 74, 75

74. The check is not in the mail or I am surprised.

75. She does or he will.

18.4 Section 3.4

18.4.1 Problems 1, 3, 6

1. Converse: If you were an hour, then beauty would be a minute. Inverse: If
beauty were not a minute, then you would not be an hour. Contrapositive:
If you were not an hour, then beauty is not a minute.

3. Converse: If you don’t fix it, it ain’t broke. Inverse: If it is broke, then you
fix it. Contrapositive: If you fix it, it is broke.

6. Converse: If it contains calcium, then it is milk. Inverse: If it is not milk,
then it does not contain calcium. Contrapositive: If it does not contain
calcium, then it is not milk.

18.4.2 Problem 51, 57, 58

51. By the rules, this must be contrary.

57. x = 1 and z = 37. x = 2 and the Coen brothers are funny. There are no
other rules governing these, so they must be consistent.

58. x = 1 and x = 2. y = 1 and y = 2. A variable cannot have two values, so
this is contrary.



130 CHAPTER 18. SOLUTIONS FOR FOURTH WEEK’S ASSIGNMENTS

18.5 Section 3.1 again

18.5.1 Problems 55, 56

55. Literally translated, ∀k ∈ Items ∀s ∈ Stores : ¬(k is available in s). We
can pull out the negation to see that this is the same as ¬(∃k ∈ Items ∃s ∈
Stores : k is available in s. So no item is available in any store. This is not the
correct statement. The advertisement means to state that some items may not
be available in all stores. We do not have the proper symbols to translate may.

56. The direct translation is ∀p ∈ People : ¬(p has time to maintain his/her car properly).
We can pull the negation out to see that ¬(∃p : p has time to maintain his/her car properly),
and the original statement says that no one maintains his/her car properly. The
intent likely was that some people do not have time to maintain their cars
properly, or ∃p : ¬(p has time to maintain his/her car properly).

18.5.2 Problems 60-64

60. A, B

61. A, C

62. C

63. B

64. A, C: “Not every” is both ¬∀x : P (x) and ∃x : ¬P (x). Using the latter,
∃p : ¬(¬(F (p))), where F (p) asserts that p has a frame. So the statement
is ∃p : F (p), or there is a framed picture.

18.5.3 Problem 75

The first statement is about every student, ∀s : ¬(s passed the test)

The second negates the entire thing, so there exists some student who did not
pass, because |= ¬∀s : s passed the test ≡ ∃s : s did not pass the test.

Note that the latter statement is still true if no student passed. So you cannot
infer that anyone passed in either statement.

18.5.4 Problem 76

Hint: Quantifiers do not necessarily exclude each other.

Both statements are true but they have different quantifiers.
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The original statement (for some real number) is true if you pick one number
(say zero) and demonstrate its truth (02 = 0 ≥ 0).

Your friend’s statement applies to all real numbers. To demonstrate its validity,
the statement must be proven to be true regardless of the value of x.

18.6 Negating statements

There is a number p for all numbers q such that the differ-
ence between p and q is 2.

Symbolically,
∀q∃p : |p− q| = 2.

Note the order of the quantifiers. So the negation is

¬(∀q∃p : |p− q| = 2) ≡ ∃q∀p : |p− q| 6= 2.

And in English:

For some number q, for all numbers p, the difference between p and
q is not 2.

Quite often the phrasing is less bizarre if you push the negation only part-way
through. Here, negating just the initial ∀q gives the phrase:

For some number q there is no number p such that the difference
between p and q is 2.

The initial statement is true, and its negation is false.

For all sets A, for all sets B, there is a set C such that
A ∩B = C and C is not ∅.

Translating:
∀A∀B∃C : A ∩B = C ∧ C 6= ∅.

Pushing the negation through the quantifiers and applying De Morgan’s laws,

¬(∀A∀B∃C : A ∩B = C ∧ C 6= ∅) ≡ ∃A∃B∀C : A ∩B 6= C ∨ C = ∅.

Back into English:

There is a set A for which there is a set B such that for all C,
A ∩B 6= C or C = ∅.

Note that the statement

∀A∀B∃C : A ∩B = C ∧ C 6= ∅

is false. If two sets A and B are disjoint, then A ∩B = ∅. Thus the negation is
true.



132 CHAPTER 18. SOLUTIONS FOR FOURTH WEEK’S ASSIGNMENTS

18.7 Function from truth table

Derive a logic expression from the following truth table. Attempt to simplify it
remembering the distributive property, De Morgan’s laws, and that |= z∨¬z ≡ 1
and |= z ∧ ¬z ≡ 0.

p q r f(p, q, r)

1 1 1 1
1 1 0 0
1 0 1 1
1 0 0 1
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0

There are fewer true values, so we start by listing individual conditions where
the function is true. These are p ∧ q ∧ r, p ∧ ¬q ∧ r, and p ∧ ¬q ∧ ¬r. Joining
these with or,

|= f(p, q, r) ≡ (p ∧ q ∧ r) ∨ (p ∧ ¬q ∧ r) ∨ (p ∧ ¬q ∧ ¬r).

Using the distributive property, we can pull out a p. Then

|= f(p, q, r) ≡ p ∧ ((q ∧ r) ∨ (¬q ∧ r) ∨ (¬q ∧ ¬r)).

Now we can pull out either ¬q or r to try simplifying inside the parenthesis.
With the former:

|= f(p, q, r) ≡ p ∧ ((q ∧ r) ∨ (¬q ∧ (r ∨ ¬r))).

Because |= r ∨ ¬r ≡ 1,

|= f(p, q, r) ≡ p ∧ ((q ∧ r) ∨ ¬q).

Now re-distribute ¬q and simplify to see

|= f(p, q, r) ≡ p ∧ (q ∨ ¬q) ∧ (r ∨ ¬q)
≡ p ∧ (r ∨ ¬q).

So a simplified form is |= f(p, q, r) ≡ p ∧ (r ∨ ¬q). Another equivalent form is
|= f(p, q, r) ≡ p ∧ (r → q).
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Notes for the fifth week:
review

Notes also available as PDF.

19.1 Review

Structure of the upcoming test:

• Ten questions. Chose six and solve them.

• Thus expect about seven minutes per question.

• Remember to read and answer the entire question.

• Closed book, etc. Calculators are fine but not necessary.

• Bring scratch paper and paper for writing up your results. Separately.

• Answers and explanations need to be indicated clearly.

• No questions are intended to be “trick” questions.

• Will cover the following topics:

– inductive v. deductive reasoning with sequences,

– problem solving,

– set theory,

– symbolic logic.

• Remember that solutions for the homework problems are available on-line:
http://jriedy.users.sonic.net/VI/math131-f08/.
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19.2 Inductive and deductive reasoning

Two primary forms of reasoning:

inductive Working from examples and intuiting how to extend them. Inductive
reasoning does not prove anything.

deductive Extending hypotheses with rules to reach a conclusion. Deductive
reasoning generates proofs (even if simple).

An example of inductive reasoning :

It has been sunny all week, so it will be sunny tomorrow.

There are no explicit rules or assumptions. We just assume the pattern continues.

An example of deductive reasoning :

The weather forecasts state that if the storm turns northward, it
will rain tomorrow. The storm has turned northward, so it will rain
tomorrow.

This sets up a rule from the weather forecast. Then the rule is applied to data,
the storm turning northward, to reach a conclusion about tomorrow.

There rarely are clean-cut distinctions. Consider extending the sequence

35, 45, 55, . . .

Reasoning inductively, we might assume that the numbers jump by ten. The
next number will be 65, then 75, and so on.

Reasoning deductively, we assume this is an arithmetic sequence starting at 35
with an increment of 10. Under this assumption, the next two numbers will be
35 + 10 · 3 = 65 and 35 + 10 · 4 = 75.

The difference between the two forms is subtle. Deductive reasoning sets up
explicit rules. The rules themselves may be discovered inductively, but making
the rules specific and applying them carefully renders the result deductive.

19.3 Problem solving

Pólya’s principles:

1. Understand the problem.

2. Devise a plan.

3. Carry out the plan.

4. Look back at your solution.



19.3. PROBLEM SOLVING 135

This is not a simple 1-2-3-4 recipe. Understanding the problem may include
playing with little plans, or trying to carry out a plan may lead you back to
trying to understand the problem.

19.3.1 Understand the problem

• Read the entire problem.

Read the whole problem.

Read all of the problem.

One comment about the homeworks: Most people answer only part of any
given problem.

• Determine what you have and what you want.

To indicate an answer clearly to someone else (like me), you need to know
what the answer is.

• Consider rephrasing the problem, either in English or symbolically.

Rephrasing the problem may help you remember solution methods.

• Try some examples.

This is close to devising a plan. Sometimes you may stumble upon an
answer.

• Look for relationships between the data.

Examples may help find relationships. The relationships may help you
decide on a plan. Mathematics is about relationships between different
entities; symbolic mathematics helps abstract away the entities themselves.

19.3.2 Devise a plan

Sometimes plans are “trivial,” or so simple it seems pointless to make them
specific. But write it out anyways. Often the act of putting a plan into words
helps find flaws in the plan.

Try to devise a plan that you can check along the way. The earlier you detect a
problem, the easier you can deal with it.

Some plans we’ve considered:

• Guessing and checking.

Try a few combinations of the data. See what falls out. This is good for
finding relationships and understanding the problem.
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• Searching using a list.

If you know the answer lies in some range, you can search that range
systematically by building a list.

• Finding patterns.

When trying examples, keep an eye open for patterns. Sometimes the
patterns lead directly to a solution, and sometimes they help to break a
problem into smaller pieces.

• Following dependencies / working backwards.

Be sure to understand what results depend on which data. Look for
dependencies in the problem. Sometimes pushing the data you have
through all the dependencies will break the problem into simpler sub-
problems.

19.3.3 Carry out the plan

Attention to detail is critial here.

When building a list, be sure to carry out a well-defined procedure. Or when
looking for patterns, be systematic in the examples you try. Don’t jump around
randomly.

19.3.4 Look back at your solution

Can you check your result? Sometimes trying to check reveals new relationships
that could lead to a better solution.

Think about how your solution could help with other problems.

19.4 Sequences

A sequence is an ordered list of numbers. Two common kinds are:

arithmetic Adds a constant increment at each step.

geometric Multiplies by a constant at each step.

One method for extending a sequence is through successive differences. Con-
sider the sequence

11 22 39 64 . . .

To compute the next term, form differences until you find a constant column:
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i Ai ∆(1)
i = Ai −Ai−1 ∆(2)

i = ∆(1)
i −∆(1)

i−1

1 11
2 22 11
3 39 17 6
4 62 23 6

5 91 29 6

19.5 Set theory

set An unordered collection of unique elements.

You can write a set by listing its entries, {1, 2, 3, 4}, or through set builder
notation, {x |x is a positive integer, x < 5}.

empty set The unique set with no elements: {} or ∅. Be sure to know the
relations between the empty set and other sets, and also how the empty
set behaves in operations.

element of You write x ∈ A to state that x is an element of A. The symbol is
not an “E” but is almost a Greek ε. Think of a pitchfork.

Note that 1 ∈ {1, 2} and {1} ∈ {{1}, {2}}, but {1} 6∈ {1, 2}.

subset Given two sets A and B, A ⊂ B if every element of A is also an element
of B. So A ⊂ B is equivalent to x ∈ A→ x ∈ B.

One implication is that ∅ ⊂ A for all sets A. This statement is vacuously
true.

Here {1} ⊂ {1, 2} and {1} 6⊂ {{1}, {2}}.

superset Given two sets A and B, B ⊃ A if every element of A is also an
element of B.

proper subset or superset A subset or superset relation is proper if it im-
plies the sets are not equal. An equivalent symbolic logic statement would
be (x ∈ A→ x ∈ B) ∧ (∃x ∈ B : x /∈ A).

Venn diagram A blobby diagram useful for illustrating operations and relations
between two or three sets.

union A ∪ B = {x |x ∈ A ∨ x ∈ B}. The union contains all elements of both
sets.

intersection A∩B = {x |x ∈ A∧x ∈ B}. The intersection contains only those
elements that exist in both sets.

set difference A \ B = {x |x ∈ A ∧ x /∈ B}. The set difference contains
elements of the first set that are not in the second set. It cannot contain
any elements of the second set.
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You can use symbolic logic to write the result of multiple operations.

(A ∩B) ∪ C = {x |x ∈ A ∧ x ∈ B} ∪ C
= {x | (x ∈ A ∧ x ∈ B) ∨ x ∈ C}.

19.6 Symbolic logic

logical statement Some clear statement that is either true or false.

Some different ways of writing true or false are acceptable:

true false
T F
1 0
> ⊥

The test’s questions use 1 and 0.

logical variable A variable standing for some logical statement. Common
variables are p, q, r.

truth table A systematic listing of all possible input truth values for an ex-
pression.

negation True when the variable is false and false when the variable is true.
Will be written ¬p.

and True only when all variables are true. Will be written p ∧ q.

or False only when all variables are false. Will be written p ∨ q.

equivalence The logical form of equality. Will be written p ≡ q.

conditional If p then q. True whenever true implies true or when false implies
anything. Will be written p→ q.

tautology A statement that always is true. Will be written |=, as in |= p ∨ ¬p.
This is just for emphasis; there is no real difference with (p ∨ ¬p) ≡ 1.

A truth table defining four operations above:

p q ¬p p ∧ q p ∨ q p→ q

1 1 0 1 1 1
1 0 0 0 1 0
0 1 1 0 1 1
0 0 1 0 0 1

Note that ¬p did not need all four lines. It does not depend on q and has the
same value regardless of whether q is false or true.
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19.6.1 From truth tables to functions

Consider the truth table:

p q f(p, q)

1 1 1
1 0 0
0 1 1
0 0 0

We can derive an expression for f(p, q) in two ways. Obviously, any expressions
must simplify to q.

One method is to work from the true values. You or together and expressions.
There is one and expression per true value. In this case, we have |= f(p, q) ≡ (p∧
q)∨(¬p∧q). Pulling out the q, this simplifies |= f(p, q) ≡ (p∨¬q)∧q ≡ 1∧q ≡ q.

The other method is to work from the false values. You and together or
expressions. There is one or expression per false value. Here, |= f(p, q) ≡
(¬p ∨ q) ∧ (p ∨ q). Pulling out q again, |= f(p, q) ≡ (¬p ∧ p) ∨ q ≡ 0 ∨ q ≡ q.

19.6.2 De Morgan’s laws and forms of conditionals

De Morgan’s laws are two very useful methods for negating terms symbolically:

|= ¬(p ∨ q) ≡ ¬p ∧ ¬q, and
|= ¬(p ∧ q) ≡ ¬p ∨ ¬q.

As an example, consider negating the conditional. Use the equivalent form
|= p→ q ≡ ¬p ∨ q. Then

¬(p→ q) = ¬(¬p ∨ q)
= ¬(¬p) ∧ ¬q
= p ∧ ¬q.

So the negation of a conditional is not a conditional itself.

There are four related forms of conditional:

conditional p→ q: If you grew up in Alaska, you have seen snow.

inverse ¬p→ ¬q: If you did not grow up in Alaska, you have not seen snow.

converse q → p: If you have seen snow, you grew up in Alaska.

contrapositive ¬q → ¬p: If you have not seen snow, you did not grow up in
Alaska.
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Only the contrapositive has the same meaning as the original conditional, so
|= p→ q ≡ ¬q → ¬p.

The converse and inverse are related to each other but are not equivalent
to the original conditional. The inverse is the contrapositive of the converse:
|= q → p ≡ ¬p→ ¬q

19.6.3 Quantifiers

quantifier A statement regarding some or all possible entries of some set.

existential Declares that some entry exists, so ∃x : x ∈ A states that A
is not empty.

universal Declares some property is true for every value. So ∀x ∈ A :
x ∈ B is another way of writing A ⊂ B.

predicate Or property. A symbolic way of expressing that some property
holds. For example, understands(s, t) may state that student s understands
topic t. A less obtuse but still acceptable statement for a simple predicate
is just “sunderstands q.”

The translation of phrases from English to quantified symbolic logic can be
tricky.

Almost every student understands all symbolic logic topics.

can translate to
∃s∀t : ¬understands(s, t)

because we don’t measure how many but rather that there is or is not one.

19.6.4 Nesting and negating quantifiers

Nested quantifiers are not operators. Each quantifier applies to the entire
remaining statement. ∀s∃t states that for every s, there exists a t for that s.
Meanwhile, ∃t∀s states that there exists one single t for every and all s.

Two rules for negating quantifiers:

¬∀s : P (s) is the same as ∃s : ¬P (s), and

¬∃s : P (s) is the same as ∀s : ¬P (s).

So saying “not all” is the same as “there exists one for not”, and saying “there
does not exist” is the same as “for all, not”.

As an example, we negate the statement above,

Almost every student understands all symbolic logic topics.
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and its translation
∃s∀t : ¬understands(s, t).

The symbolic negation is

¬(∃s∀t : ¬understands(s, t)) = ∀s¬(∀t : ¬understands(s, t))
= ∀s∃t : ¬(¬understands(s, t))
= ∀s∃t : understands(s, t).

Translating back to English,

All students understand some symbolic logic topic.

It may be true that no two students understand the same topic, but every
student understands some topic.
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Chapter 20

First exam and solutions

Available as PDF.
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Chapter 21

Notes for the sixth week:
numbers and computing

Notes also available as PDF.

What we will cover from Chapter 4:

• Numbers and digits in different bases, with historical context

• Arithmetic, digit by digit

And additionally, I’ll give a brief summary of computer arithmetic.

21.1 Positional Numbers

A number is a concept and not just a sequence of symbols. We will be discussing
ways to express numbers.

Multiple types of numbers:

nominal A nominal number is just an identifier (or name). In many ways these
are just sequences of symbols.

ordinal An ord inal number denotes order : 1st, 2nd, . . .

Adding ordinal or nominal numbers doesn’t make sense. This brings up a third
type:

cardinal Cardinal numbers count.

The name comes from the cardinality of sets.

Before our current form:
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• Piles of rocks don’t work well for merchants.

• Marks on sticks, then marks on papyrus.

Marking numbers is costly. A large number becomes a large number of marks.
Many marks lead to many errors. Merchants don’t like errors. So people started
using symbols rather than plain marks.

An intermediate form, grouping:

• Egyptian: Different symbols for different levels of numbers: units, tens,
hundreds. Grouping within the levels.

• Roman: Symbols for groups, with addition and subtraction of symbols for
smaller groups.

• Greek (and Hebrew and Arabic): Similar, but using all their letters for
many groups.

• Early Chinese: Denote the number of marks in the group with a number
itself. . .

Getting better, but each system still has complex rules. The main problems
are with skipping groups. We now use zero to denote an empty position, but
these systems used varying amounts of space. Obviously, this could lead to trade
disagreements. Once zeros were adopted, many of these systems persisted in
trade for centuries.

Now into forms of positional notation, shorter and more direct:

• Babylonian:

– Two marks, tens and units.

– Now the marks are placed by the number of 60s.

– Suffers from complicated rules about zeros.

– (Using 60s persists for keeping time...)

• Mayan:

– Again, two kinds of marks for fives and units.

– Two positional types: by powers of 20, and by powers of 20 except
for one power of 18.

– (Note that 18 · 20 = 360, which is much closer to a year.)

– Essentially equivalent to what we use, but subtraction in Mayan is
much easier to see.

• (many other cultures adopted similar systems (e.g. Chinese rods)

Current: Hindu-Arabic numeral system
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The characters differ between cultures, but the idea is the same. The characters
often are similar as well. Originated in the region of India and was carried west
through trade. No one knows when zero was added to the digits. The earliest
firm evidence is in Arab court records regarding a visitor from India and a
description of zero from around 776 AD. The first inscription found with a zero
is from 876 AD in India. However, the Hindu-Arabic system was not adopted
outside mathematics even in these cultures. Merchants kept to a system similar
to the Greek and Hebrew systems using letters for numbers.

Leonardo Fibonacci brought the numerals to Europe in the 13th century (after
1200 AD) by translating an Arabic text to Latin. By 15th century, the nu-
meral system was in wide use in Europe. During the 19th century, this system
supplanted the rod systems in Asia.

The final value of the number is based on the positions of the digits:

1234 = 1 · 103 + 2 · 102 + 3 · 101 + 4 · 100.

We call ten the base. Then numbers becomes polynomials in terms of the base
b,

1234 = b3 + 2 · b2 + 3 · b1 + 4.

Here b = 10.

So we moved from marks, where 1000 would require 1000 marks, to groups,
where 1000 may be a single mark but 999 may require dozens of marks. Then
we moved to positional schemes where the number of symbols depends on the
logarithm of the value; 1000 = 103 requires 4 = 3 + 1 symbols.

After looking at other bases, we will look into operations (multiplication, addition,
etc.) using the base representations.

21.2 Converting Between Bases

Only three bases currently are in wide use: base 10 (decimal), base 2 (binary),
and base 16 (hexadecimal). Occasionally base 8 (octal) is used, but that is
increasingly rare. Other conversions are useful for practice and for seeing some
structure in numbers. The structure will be useful for computing.

Before conversions, we need the digits to use. In base b, numbers are expressed
using digits from 0 to b− 1. When b is past 10, we need to go beyond decimal
numerals:

Value: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Digit: 0 1 2 3 4 5 6 7 8 9 A B C D E F

Upper- and lower-case are common.
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So in hexadecimal, DECAFBAD is a perfectly good number, as is DEADBEEF. If
there is a question of what base is being used, the base is denoted by a subscript.
So 1010 is a decimal ten and 102 is in binary.

To find values we recognize more easily, we convert to decimal. Then we will
convert from decimal.

21.2.1 Converting to Decimal

Converting to decimal using decimal arithmetic is straight-forward. Remember
the expansion of 1234 with base b = 10,

1234 = 1 · 103 + 2 · 102 + 3 · 101 + 4 · 100

= b3 + 2 · b2 + 3 · b1 + 4.

Each digit of DEAD has a value, and these values become the coefficients. Then
we expand the polynomial with b = 16. In a straight-forwart way,

DEAD = D · 163 + E · 162 + A · 161 + D

= 13 · 163 + 14 · 162 + 10 · 16 + 13
= 13 · 4096 + 14 · 256 + 10 · 16 + 13
= 57005.

We an use Horner’s rule to expand the polynomial in a method that often is
faster,

DEAD = ((13 · 16 + 14) · 16 + 10) · 16 + 13
= (222 · 16 + 10) · 16 + 13
= 3562 · 16 + 13
= 57005.

Let’s try a binary example. Convert 11012 to decimal:

11012 = (((1 · 2 + 1) · 2 + 0) · 2 + 1
= (3 · 2 + 0) · 2 + 1
= 6 · 2 + 1
= 13.

Remember the rows of a truth table for two variables? Here,

112 = 2 + 1 = 3,
102 = 2 + 0 = 2,
012 = 0 + 1 = 1, and
002 = 0 + 0 = 0.



21.3. OPERATING ON NUMBERS 149

21.2.2 Converting from Decimal

To convert to binary from decimal, consider the previous example:

13 = 8 + 5

= 8 + 4 + 1

= 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20

= 11012.

At each step, we find the largest power of two less than the remaining number.
Another example for binary:

293 = 256 + 37

= 256 + 32 + 5

= 256 + 32 + 4 + 1

= 1 · 28 + 1 · 25 + 1 · 22 + 1
= 1001001012.

And in hexadecimal,

293 = 256 + 37

= 1 · 256 + 2 · 16 + 5
= 12516.

You can see why some people start remembering powers of two.

If you have no idea where to start converting, remember the relations blogb x = x
and logb x = log x/ log b. Rounding logb x up to the larger whole number gives
you the number of base b digits in x.

The text has another version using remainders. We will return to that in the
next chapter. And conversions to and from binary will be useful when we discuss
how computers manipulate numbers.

21.3 Operating on Numbers

Once we split a number into digits (decimal or binary), operations can be a bit
easier.

We will cover multiplication, addition, and subtraction both

• to gain familiarity with positional notation, and

• to compute results more quickly and mentally.
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Properties of positional notation will help when we explore number theory.

We will use two properties frequently:

• Both multiplication and addition commute (a + b = b + a) and re-
associate (a+ b) + c = a+ (b+ c).

• Multiplication distributes over addition, so a(b+ c) = ab+ ac.

• Multiplying powers of a common base adds exponents, so ba · bc = ba+c.

21.3.1 Multiplication

Consider multiplication. I once had to learn multiplication tables for 10, 11, and
12, but these are completely pointless.

Any decimal number multiplied by 10 is simply shifted over by one digit,

123 · 10 = (1 · 102 + 2 · 101 + 3 · 100) · 10

= 1 · 103 + 2 · 102 + 3 · 101

= 1230.

Multiplying by 11 = 1 · 10 + 1 is best accomplished by adding the other number
to itself shifted,

123 · 11 = 123 · (10 + 1) = 1230 + 123 = 1353.

And for 12 = 1 · 10 + 2, you double the number,

123 · 12 = 123 · (10 + 2) = 1230 + 246 = 1476.

Multiplying longer numbers quickly follows the same pattern of shifting and
adding. We can expand 123 · 123 = 123 · (1 · 102 + 2 · 10 + 3) to

123
× 123

369
2460

12300

15129

Another method expands the product of numbers as a product of polynomials,
working one term at a time. This is essentially the same but not in tabular form:

123 · 123 = (1 · 102 + 2 · 10 + 3) · (1 · 102 + 2 · 10 + 3)

= (1 · 102 + 2 · 10 + 3) · (1 · 102 + 2 · 10) + (1 · 102 + 2 · 10 + 3) · 3
= (1 · 102 + 2 · 10 + 3) · (1 · 102 + 2 · 10) + (3 · 102 + 6 · 10 + 9)
= . . .
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This form splits the sums apart as well; we will cover that next.

Bear in mind that short-term memory is limited to seven to eight pieces of
information. Structure mental arithmetic to keep as few pieces in flight as
possible. One method is to break multiplication into stages. In long form, you can
group the additions. For example, expanding 123·123 = 123·(1·102)+(123·23) =
123 · (1 · 102) + (123 · 2 · 10 + 123 · 3),

123
× 123

369
2460

2829
12300

15129

Assuming a small number uses only one slot in your short-term memory, need
track only where you are in the multiplier, the current sum, the current product,
and the next sum. That leaves three to four pieces of information to use while
adding.

One handy trick for 15% tips: divide by ten, divide that amount by two, and
add the pieces. We can use positional notation to demonstrate how that works,

x · 15% = (x · 15)/100
= ((x · (10 + 5))/100
= ((x · 10) + (x · (10/2)))/100
= x/10 + (x/10)/2

21.3.2 Addition

Digit-by-digit addition uses the commutative and associative properties:

123 + 456 = (1 · 102 + 2 · 10 + 3) + (4 · 102 + 5 · 10 + 6)

= (1 + 4) · 102 + (2 + 5) · 10 + (3 + 6)
= 579.

Naturally, when a digit threatens to roll over ten, it carries to the next digit.
Expanding the positional notation,

123 + 987 = (1 · 102 + 2 · 10 + 3) + (9 · 102 + 8 · 10 + 7)

= (1 + 9) · 102 + (2 + 8) · 10 + (3 + 7)

= 10 · 102 + 10 · 10 + 10.
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Because the coefficients are greater than b− 1 = 9, we expand those coefficients.
Commuting and reassociating,

123 + 987 = 10 · 102 + 10 · 10 + 10

= (1 · 10 + 0) · 102 + (1 · 10 + 0) · 10 + (1 · 10 + 0)

= 1 · 103 + 1 · 102 + 1 · 10 + 0
= 1110.

However, when working quickly, or when the addition will be used in another
operation, you do not need to expand the carries immediately. This is called a re-
dundant representation because numbers now have multiple representations.
You can represent 13 as 1 · 10 + 3 or simply as 13.

If you work that way mentally, you need to keep the intermediate results in
memory. So during multiplying, you only need to work out the carries every
three to four digits. . .

21.3.3 Subtraction

In systems with signed numbers, we know that subtracting a number is the same
as adding its negation: a− b = a+ (−b). So we expect the digit-by-digit method
to work with each digit subtracted, and it does. Because −a = −1 · a, we can
distribute the sign over the digits:

456− 123 = (4 · 102 + 5 · 10 + 6)− (1 · 102 + 2 · 10 + 3)

= (4 · 102 + 5 · 10 + 6) + (−(1 · 102 + 2 · 10 + 3))

= (4 · 102 + 5 · 10 + 6) + (−1 · 102 +−2 · 10 +−3)

= (4− 1) · 102 + (5− 2) · 10 + (6− 3)
= 333.

As with carrying, borrowing occurs when a digit goes negative:

30− 11 = (3 · 101 + 0)− (1 · 101 + 1)

= (3− 1) · 101 + (0− 1)

= 2 · 101 +−1

= 1 · 101 + (10− 1)

= 1 · 101 + 9
= 19.

Again, you can use a redundant intermediate representation of 2 · 101 − 1 if
you’re continuing to other operations. And if all the digits are negative, you
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can factor out −1,

123− 456 = (1 · 102 + 2 · 10 + 3)− (4 · 102 + 5 · 10 + 6)

= (1− 4) · 102 + (2− 5) · 10 + (3− 6)

= (−3) · 102 + (−3) · 10 + (−3)

= −(3 · 102 + 3 · 10 + 3)
= −333.

21.3.4 Division and Square Root: Later

We will cover these later with number theory.

21.4 Computing with Circuits

No one can argue that computing devices (computers, calculators, medical
monitors, etc.) are irrelevant to everyday life. Here we lay the groundwork for
how computers compute.

Essentially, computers perform arithmetic on binary numbers. But different
methods of combining the arithmetic operations produce character strings,
sounds, graphics, . . .

While those are courses in themselves, we at least can explain the very lowest
levels of computer arithmetic. Automated computing is in its relative infancy.
People have been building roads, bridges, and vehicles for thousands of years.
Even motors are hundreds of years old. But modern computing is less than a
hundred years old and became wide-spread only 30 years ago. Before the 1970s,
desktop calculators were rare. And before the 1980s, calculators were virtually
unaffordable.

Maybe someday we will be able to take safe computing for granted just like
we take safe bridges for granted, but not yet. It’s important at least to have
heard how computing works so you can gain a sense of where limitations are.
Consider an issue like the largest range of numbers you can represent exactly in
a calculator, spreadsheet, or other program. Each may have different limitations
that appear random but certainly are not. Having some sense of how computers
compute lets you explain or (hopefully) anticipate limitations and work around
them.

21.4.1 Representing Signed Binary Integers

Converting non-negative numbers to binary is straight-forward. Computer
representations work with a limitied number of binary digits, or bits. With
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32 bits, any non-negative integer less than 233 = 8589934592 ≈ 109.9 can be
represented exactly. With n bits, all non-negative integers less than 2n+1 can be
represented exactly. For example, the largest two bit number is 112 = 3 < 22 = 4.

Representing both positive and negative numbers, however, presents some design
choices. One can use one of the bits (often the leading bit) as a sign bit.
The number then becomes −1sign bit· the rest of the bits. This reduces the
representable range of n bits to (−(2n), 2n) and requires treating one bit specially
during operations. (The notation (a, b) is an open range, one that does not
include its endpoints.) We need separate operations for a+ b and a− b. Also,
we need to cope with +0 and −0.

We can eliminate the need for separate operations and also eliminate the signed
zero.

A representation named one’s complement plays a little trick with arithmetic
to absorb the sign into the number. This allows using addition for subtraction. . .

We start by negating a number if it is negative:

# Bits

3 011
2 010
1 001
0 000

-0 111
-1 110
-2 101
-3 100

Adding two n-digit numbers may produce an n+ 1-digit result. For example,
112 + 112 = 1102 in binary or 5 + 6 = 11 in decimal. Consider three bit addition:

110
+ 10

1000

If we capture the carry bit 1 and feed it back around, then 1102 + 102 7→
0002 + 12 = 12. In one’s complement, this is −1 + 2 = 1 as expected.

So to add two numbers, positive or negative, we just add the one’s complement
representation. To subtract a− b, we negate b and add it to a. We only need
one operation, addition, for addition and subtraction.

But we still have given an entire bit over to the sign. We can do slightly better
with two’s complement. More importantly, we can reduce the system to
having only a single, unsigned zero. Having an unsigned zero is much easier to
handle with multiplication and division.

To represent a negative number in two’s complement, we negate it and add one:
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# Bits

3 011
2 010
1 001
0 000

-1 111
-2 110
-3 101
-4 111

By not including -0, we have room for one more number. By the two’s complement
method, it happens to fall on the end of the negative scale. Here, n bits represent
all integers in [−2n, 2n). (The notation [a, b] is a closed range including a and
b. Notations using square brackets on one side but not the other are half-open
and include the end-point against the square bracket.)

There are other representations:

• A biased representation adds 2n−1 or 2n−1 − 1 to every number and
then represents the result. This shifts all the negative numbers to be
non-negative. This representation has an explicit sign bit but only a single
zero.

• A base -2 rather than base 2 representation is bizarre, but it works. These
most often are used for redundant representations inside other arithmetic
operations. There are twice as many negative numbers as positive numbers,
no sign bit, and only a single zero.

• Larger bases can be used by grouping bits. This also allows for more
redundant representations. One representation using 1, 0, and -1 for digits
is particularly interesting, but we won’t cover it here.

21.4.2 Adding in Binary with Logic

Above we have reduced addition and subtraction of signed numbers into simple
addition. Here we implement addition in logic and construct the half adder
and full adder circuits.

Consider a truth table for a ∧ b and a⊕ b (exclusive or):

a b a ∧ b a⊕ b a+ b

1 1 1 0 102

1 0 0 1 012

0 1 0 1 012

0 0 0 0 002

If we append a column representing the sum of a and b in binary, we see that
the first digit is a ∧ b and the second is a⊕ b!
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This is a half adder. The half adder takes two bits as input and produces a
sum bit s = a⊕ b and a carry bit c = a ∧ b.

(drawing)

A full adder takes input bits and a previous carry bit to produce an output
sum and carry. We can add a+ b and then (a+ b) + cin. Note that only one of
those sums can generate a carry, so or -ing the carry outputs generates the final
output. 1 + 1 + 1 = 3 = 112 < 1002, so the sum’s output cannot require more
than two bits.

So a full adder can be constructed with two half-adders and one extra or-gate
for the carry:

a b cin (a⊕ b)⊕ cin (a ∧ b) ∨ (cin ∧ (a⊕ b))
1 1 1 1 1
1 1 0 1 0
1 0 1 1 0
1 0 0 0 1
0 1 1 1 0
0 1 0 0 1
0 0 1 0 1
0 0 0 0 0

To add two n bit numbers, you start by adding the low-order bits (coefficient in
front of 20) with a half-adder. The sum is output and the carry follows into a
full adder for adding the coefficients of 21. The process continues resulting in an
n-bit sum and a single carry bit.

The carry bit often is ignored, leading to overflow and wrap-around. At a low
level, adding two positive integers each greater than 2n−1 produces a negative
number ! This is terribly handy for some algorithms and detrimental to others.
All architectures make the carry bit available for diagnosing overflow, but not
all programming environments let users access that information.

Adding two n-bit numbers requires a minimum of one half-adder and n− 1 full
adders, or 2n− 1 half-adders and n− 1 or gates, or 2n− 1 exclusive-or gates,
2n− 1 and gates, and n− 1 or gates. Because of the dependence on the previous
bit sum’s carry output, it appears that each bit must be computed one at a
time, or serially. There are tricks using redundant representations that allow
computing the result in larger chunks, exposing more parallelism within the
logic gates.

21.4.3 Building from Adders

Given addition, we could implement multiplication as repeated addition. Remem-
ber the Egyptian algorithm from the text?
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The binary representation of the multiplier serves as a mask. Consider multi-
plying the 3-bit numbers 0112 = 3 and 1012 = 5:

011 ·1
011 ·0

011 ·1
01111

At each step, the bits of 1012 determine whether or not a shifted copy of 0112 is
added into the result. We can implement this by shifting and adding serially, or
we can construct a multiplier array out of adders.

Again, there are optimizations related to redundant representations, but ul-
timately most processors dedicate a large amount of their physical size (and
“power budget”) to multiplier arrays.

The problem of overflow becomes very important for multiplication. Because
2n · 2n = 22n, the product of two n-bit numbers may require 2n bits. Most
architectures deliver the result in two n-bit registers (the limited number of
variables a processor has to work with).

21.4.4 Decimal Arithmetic from Binary Adders

Ok, so we can add, subtract, and multiply numbers in binary. What about
decimal? Alas, we lack the nifty two’s complement tricks in decimal, so all
decimal units need to cope with signs differently. Most use explicit signs and
always convert -0 to 0.

For integers, conversion back and forth can occur exactly as in class. With 32
bits, there are at most d32 · log10 2e = 10 decimal digits. (The notation dxe
rounds x to the closest integer k > x.) So software can lop off digits one at a
time, often using the text’s algorithm with remainders.

There are times when you want to work directly with decimal numbers, however.
Some of these are dictated by legal or engineering considerations. For example,
the “cpu” of a hand-held calculator is does not really run software or store many
intermediate results. There, every result is calculated in decimal often using a
representation called BCD for binary coded decimal.

A decimal number is represented digit-by-digit in binary. So 29 = 2 · 10 + 9 =
(102) · 10 + (10012). This is relatively inefficient. The largest two digits 8 and 9
both require four bits, but the rest require only three. So six binary strings are
not used and cannot represent digits. For example, 10102 = 10 > 9, so 10102

will never appear in a correct BCD digit encoding. In BCD, results mostly are
computed digit-by-digit in binary and then manipulated into a correct BCD
encoding.

Using four bits per digit has one major advantage; each decimal digit is a
hexadecimal digit. So the hex number 159416 is interpreted as the decimal 1594.
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This also allows a nifty trick for adding two BCD-encoded numbers.

Say we want to add a = 1103 and b = 328. In decimal, a+ b = 1431. If we were
to add these directly in hexadecimal, a+ b = 142B16. There needs to be some
mechanism for carrying. We can use the six missing code points to force a carry
into the next digit, and then we can compare with the exclusive-or to detect
where carries actually happened.

The procedure starts by adding 6 to each BCD digit as if they were hexadecimal.
So we shift each digit of a to the top of its hex range and use a+666616 = 776916.
Now we compute a sum s1 = (a+ 666616) + b = 7A9116. This isn’t the final sum;
if we subtract 6 from every digit, 7A9116 − 666616 = 142B16, we do not obtain a
BCD-encoded number.

We need to subtract 6 only from those digits that did not generate a carry,
7A9116 − 666016 = 143116. This is a correct BCD number and the correct result.
The carries can be detected by comparing (a+ 666616) + b with (a+ 666616)⊕ b,
the bitwise exclusive or. If the two results differ in the lowest bit per hex digit /
BCD digit, we know there was a carry and we know where to subtract 616.

Alas, there are no particularly nice tricks for multiplication. But if most uses
include adding a list of prices and applying a tax once, it’s not so bad.

Another form that wastes far less space is called millennial encoding. Because
210 = 1024 > 103, ten bits can represent all three decimal digit numbers. This
wastes only 25 encoding points per three decimal digits, as opposed to wasting
six points every for every single decimal digit. Arithmetic operates in binary on
the chunks of ten bits and then manipulates the results.

And there are more encodings, including Tien Chi Chen and Dr. Irving T. Ho’s
Chen-Ho encoding (1975), Mike Cowlishaw’s DPD encoding (densely packed
decimal, 2002), and Intel’s BID encoding (binary integer decimal). These
require more complicated coding techniques to explain, but the latter two (DPD
and BID) are now (as of August, 2008) international standards.



Chapter 22

Homework for the sixth
week: numbers and
computing

22.1 Homework

Practice is absolutely critical in this class.

Groups are fine, turn in your own work. Homework is due in or before class on
Mondays.

• Section 4.1:

– Problems 35, 36 (the algorithm is in the text, see Section 4.1, Example
4)

• Section 4.2:

– Problems 2, 3, 5, 6, 11, 12

• Section 4.3:

– Problem 2, 7, 8

– Problems 19-22 (the “calculator shortcut” is Horner’s rule)

– Problems 37-40

– Problem 57 (he played at the festival)

• Expressing numbers in positional form:
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– Take a familiar incomplete integer, 679 , and express it as a sum
of the digits times powers of ten using variables x0 and x4 for the
digits in the blanks. Simplify to the form of x4 · 104 + x0 · 100 + z,
where z is a single number in positional form (a sequence of digits).
Does 72 divide z? Does 8 divide z? Does 9 divide z? Remember that
72 = 8 · 9. We will use this example again in the next chapter.

• Operations;

– Multiply 47 by each of 3, 13, and 23. Show your work, and work digit-
by-digit. Use either the expanded form (expanding (4·10+7)·(2·10+3)
or the tabular form collapsing the sum every two steps.

– Add 47 to each of 52, 53, and 54. Show your work, and work digit-
by-digit. Show an intermediate redundant representation if there is
one.

– Subtract 19 from each of 7, 19 (not a typo), 20, and 29. Show
your work, and work digit-by-digit. Show an intermediate redundant
representation if there is one.

Note that you may email homework. However, I don’t use MicrosoftTM products
(e.g. Word), and software packages are notoriously finicky about translating
mathematics.

If you’re typing it (which I advise just for practice in whatever tools you use),
you likely want to turn in a printout. If you do want to email your submission,
please produce a PDF or PostScript document.



Chapter 23

Solutions for sixth week’s
assignments

Also available as PDF.

23.1 Section 4.1, problems 35 and 36

Multiplying 26 · 53 by the Egyptian algorithm:

1 53
2 106
4 212
8 424
16 848

Now 26 = 16 + 8 + 2, so 26 · 53 = 848 + 424 + 106 = 1378.

Computing 33 · 81:

1 81
2 162
4 324
8 648
16 1296
32 2592

Because 33 = 32 + 1, 33 · 81 = 2592 + 81 = 2673.
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23.2 Section 4.2

Problem 2 925 = 9 · 102 + 2 · 101 + 5 · 100

Problem 3 3774 = 3 · 103 + 7 · 102 + 7 · 101 + 4 · 100

Problem 5 4 · 103 + 9 · 102 + 2 · 101 + 4 · 100

Problem 6 5 · 104 + 2 · 103 + 1 · 102 + 1 · 101 + 8 · 100

Problem 11 6209

Problem 12 503568

23.3 Section 4.3

Problem 2 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24

Problem 7 B6E16, B6F16, B7016

Problem 8 101102, 101112, 110002

Problem 19 3BC16 = (3 · 16 + 11) · 16 + 12 = 956

Problem 20 344325 = (((35̇ + 4) · 5 + 4) · 5 + 3) · 5 + 2 = 2492

Problem 21 23667 = ((2 · 7 + 3) · 7 + 6) · 7 + 6 = 881

Problem 22 1011011102 = (((((((1 · 2 + 0) · 2 + 1) · 2 + 1) · 2 + 0) · 2 + 1) · 2 +
1) · 2 + 1) · 2 + 0 = 366

Problem 37 586 = 512 + 64 + 8 + 2 = 29 + 26 + 23 + 21 = 10010010102

Problem 38 12888 = 3 ·4096+1 ·512+1 ·64+3 ·8 = 3 ·84 +1 ·83 +1 ·82 +3 ·8 =
311308

Problem 39 8407 = 1021121013

Problem 40 11028 = 22301104

Problem 57 9 · 122 + 10 · 12 + 11 = 1427

23.4 Positional form

Take a familiar incomplete integer, 679 , and express it as a sum
of the digits times powers of ten using variables x0 and x4 for the
digits in the blanks. Simplify to the form of x4 · 104 + x0 · 100 + z,
where z is a single number in positional form (a sequence of digits).
Does 72 divide z? Does 8 divide z? Does 9 divide z? Remember
that 72 = 8 · 9. We will use this example again in the next chapter.
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We can expand 679 to be x4·104+6·103+7·102+9·10+x0 = x4·104+x0+6790,
so z = 6790. Unfortunately, none of the numbers provided divide cleanly into
6790. Jumping to the next chapter, 6790 = 94 · 72 + 22 = 848 · 8 + 6 = 754 · 9 + 4.

23.5 Operations

Multiplication:

• 47 · 3 = (4 · 10 + 7) · 3 = 12 · 10 + 21 = 141.
Or in table form:

47
· 3

21
12

141

• 47·13 = (4·10+7)·(10+3) = (4·102+7·10)+(12·10+21) = 470+141 = 611.
Or in table form:

47
· 13

21
12

141
47

611

• 47 · 23 = (4 · 10 + 7) · (2 · 10 + 3) = (8 · 102 + 14 · 10) + (12 · 10 + 21) =
940 + 141 = 1081.
Or in table form:

47
· 23

21
12

141
14

240
8

1081
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Addition:

• 47 + 52 = (4 + 5) · 10 + (7 + 2) = 9 · 10 + 9 = 99.

• 47+53 = (4+5)·10+(7+3) = 9 · 10 + 10 = 10 · 10 + 0 = 1·102+0·10+0 =
100. Both bold forms are redundant intermediate representations.

• 47+54 = (4+5)·10+(7+4) = 9 · 10 + 11 = 10 · 10 + 1 = 1·102+0·10+1 =
101. Both bold forms are redundant intermediate representations.

Subtraction:

• 7− 19 = (0− 1) · 10 + (7− 9) = −1 · 10 +−2· = −1 · (1 · 10 + 2) = −12.
The bold form is a redundant intermediate representation.

• 19− 19 = (1− 1) · 10 + (9− 9) = 0 + 0 = 0.

• 20− 19 = (2− 1) · 10 + (0− 9) = 1 · 10 +−9 = 0 · 10 + (10− 9) = 1. The
bold form is a redundant intermediate representation.

• 29− 19 = (2− 1) · 10 + (9− 9) = 1 · 10 + 0 = 10.



Chapter 24

Notes for the seventh week:
primes, factorization, and
modular arithmetic

Notes also available as PDF.

What we will cover from Chapter 5:

• divisibility and prime numbers,

• factorization into primes,

• modular arithmetic,

• finding divisibility rules,

• greatest common divisors and least common factors,

• Euclid’s algorithm for greatest common divisors, and

• solving linear Diophantine equations.

Once upon a time, number theory was both decried and revered as being “pure
mathematics” with no practical applications. That is no longer remotely true.
There are oblique applications in error correction (e.g. how CDs still play when
scratched), but one overwhelming, direct application is in encryption. So I also
will discuss

• Euler’s totient function (φ(n)) and the RSA encryption algorithm. Alas,
we didn’t reach this. We might cover it in the future.

The RSA algorithm is at the core of the secure socket layer (SSL) protocol used
to secure web access (the https prefix, colored locks, etc.).
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This week, we will cover divisibility, primes, factorization, and modular arith-
metic.

24.1 Divisibility

When defining operations on integers, we skipped division. As with subtraction,
the integers are not closed over division; 1/2 is not an integer. So we define
division implicitly.

For any integers a and b, we can write

b = q · a+ r,

where q is an integer called the quotient, and r < |a| is a non-negative integer
called is the remainder, residue, or residual. We will see that requiring
0 ≤ r < |a| is very important and makes division well-defined.

Then a divides b, or a | b, when r = 0. Alternately, b is a multiple of a and a
is a divisor of b. If we cannot write b = q · a+ r with r = 0, then a does not
divide b, or a - b. When a | b, then we define division as b/a = q.

For example,

14 = 2 · 7 + 0, so 7 | 14 and 14/7 = 2, and
20 = 2 · 7 + 6, so 7 - 20 and 20/7 is not an integer.

In the latter case, though, 20/7 = 2 + 6/7, which rounds down to 2.

Some other examples showing extreme and negative cases,

−6 = −3 · 2 + 0, so 2 | −6 and −6/2 = −3,
−6 = 3 · −2 + 0, so −2 | −6 and −6/− 2 = 3,

6 = −3 · −2 + 0, so −2 | 6 and 6/− 2 = −3,
−7 = −4 · 2 + 1, so 2 - −7,
−7 = 4 · −2 + 1, so −2 - −7,

7 = −3 · −2 + 1, so −2 - 7 (note: not −4 · −2− 1),
5 = 0 · 10 + 5, so 10 - 5, and
0 = 0 · 13 + 0, so 13 | 0 and 0/13 = 0.

What about when a = 0? Then b = q · 0 + b is true for any quotient q. Without
further restrictions on q, division by zero is not be well-defined. In calculus and
some applications, there are times when you fill in the hole left by a division by
zero by some obvious completion.

But is the form b = qa+ r well-defined when a 6= 0?
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Theorem: The expansion b = qa+ r with 0 ≤ r < |a| is unique for a 6= 0, so
division is well-defined.

Proof. We begin by assuming there are two ways of expanding b = qa+ r. Then
we show that the forms must be identical.

Let there be two distinct ways of writing b = qa+ r with a 6= 0,

b = q1a+ r1, and
b = q2a+ r2,

with 0 ≤ r1 < |a| and 0 ≤ r2 < |a|.

If r1 = r2, then b − r1 = b − r2. From the equations above b − r1 = q1a and
b − r2 = q2a, so q1a = q2a or (q1 − q2)a = 0. Because a 6= 0, q1 = q2 and the
forms are identicall.

For r1 6= r2, we know one of them is larger. Without loss of generality, assume
r1 < r2. Then there is some positive integer k such that increases r1 to match
r2, or r2 = r1 + k. Note that k ≤ r2.

Substituting for r2, we see that b = q2a+ r1 + k, or equivalently b− k = q2a+ r1.
Now we can subtract this equation from b = q1a+ r1 to obtain

k = (q1 − q2)a = z · a+ 0

for some quotient z.

So a | k, but k ≤ r2 < |a|. The only way we can satisfy this is if q1 − q2 = 0 and
q1 = q2. Thus also k = 0 and r1 = r2. So we cannot have to different ways to
write b = q · a+ r, and our form of division is well-defined.

Some useful properties of divisibility:

• If d | a and d | b, then d | ra+ sb for all integers r and s. A quick proof:
a = qad and b = qbd, so ra+sb = rqad+sqbd = (rqa+sqb)d, then d|ra+sb.

• If a | b and b | c, then a | c. Quick proof: b = qaa, c = qbb, so c = qb(qaa) =
(qbqa)a.

• If a | bc and a - b, then a | c.

24.2 Primes

Divisibility gives a numbers a multiplicative structure that’s different than the
digit-wise structure we previously examined.
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To build the structure, we start from numbers which cannot be decomposed. An
integer p > 1 is called a prime number if its only divisors are 1 and p itself. We
will explain why 1 is not considered prime when we discuss factorization. All
other numbers are composite and must have some prime divisor.

Consider possible divisors of 11,

11 = 11 · 1 + 0 so 1 | 11,
11 = 5 · 2 + 1 so 2 - 11, and
11 = 3 · 3 + 2 so 3 - 11.

We can stop at 3. Because multiplication is commutative, any divisors come in
pairs. The smaller of the pair must be ≤

√
11 ≈ 3.3; that’s the point where any

pairs a · b are repeated as b · a.

So the only divisor less than
√

11 is 1, and 11 is prime.

How many primes are there?
Theorem: There are infinitely many primes.

Proof. Assume there are only k primes p1, p2, . . . , pk and all other numbers are
composite. Then let n = p1 · p2 · · · · · pk + 1, one larger than the product of all
primes.

Consider dividing n by some prime, say pk. Then we can write n = (p1 · p2 ·
· · · · pk−1)pi + 1. Given the form is unique and r = 1, pk does not divide n. We
could have chosen any of the primes, so pi - n for all i = 1, . . . , k. Thus no prime
divides n.

For a number n to be composite, it must have some factor or divisor other than
1 and n. If that factor is not prime, then the factor has another factor, and so
forth until you reach some prime. Because of transitivity of division (a | b and
b | c imply a | c), the prime must divide n. Here, though, no primes divide n, so
n cannot be composite and must be prime itself.

So assuming there are k primes leads to a contradiction because we can construct
one more. Thus there are either no primes or infinitely many. We demonstrated
that 11 is prime, so there must be infinitely many primes.

There are mountains of unanswered questions about prime numbers. Consider
the pairs of primes (3, 5), (11, 13), and (17, 19). Each are separated by two. Are
there infinitely many such pairs? No one knows. Similarly, there are Mersenne
primes of the form 2n − 1. No one knows how many Mersenne primes exist.
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24.3 Factorization

A factorization of a number is a decomposition into factors. So 24 = 8 · 3 is a
factorization of 24, as is 24 = 4 · 2 · 3. A prime factorization is a factorization
into primes. Here 24 = 2 ·2 ·2 ·3 is a prime factorization of 24. We use exponents
to make this easier to write, and 24 = 23 · 3.

You can be systematic about prime factorization and discover the primes through
the sieve of Eratosthenes. Consider finding a prime factorization of 1100.

We start just by writing possible factors. Technically we need integers only
≤
√

1100 ≈ 33.6, but we only fill enough here to demonstrate the point.

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20

The first possible factor is 2, and 2 | 1100. We divide by two until the result is
not divisible by 2. This gives 1100 = 22 · 275. Then we cross out all multiples of
2; these cannot divide 275. Because 275 = 91 · 3 + 2, 3 - 275. But we also know
no multiples of 3 divide 275, so we cross out all remaining multiples of 3.

The next not crossed out is 5, which divides 275. Now 1100 = 22 · 52 · 11. We
showed 11 is prime before, but let’s continue this method. Cross out all multiples
of five. The next number to try is 7, which does not divide 11. But we can cross
out all multiples of 7. The next free number is 11, which we have again shown
to be prime.

In our (short) list, it happens that only primes remain. We have sieved out all
the non-primes. Actually, once we removed all multiples of primes ≤

√
20, only

primes remained.

Moving from one prime to the next is a systematic method both for finding
prime numbers and for finding a prime factorization.

Factorizations provide a useful mechanism for working

We will not prove the following, but is often called the fundamental theorem
of arithmetic:
Theorem: Every integer greater than one has a unique prime factorization.

This theorem, which we will not prove, is why 1 is not considered a prime. If it
were, 10 = 2 · 5 = 1 · 2 · 5 = 12 · 2 · 5 = . . . would all be prime factorizations of 10.

24.4 Modular Arithmetic

Factorization itself will prove useful later. Now we will explore modular arithmetic
and find some quick rules for determining when d | a for some d.

Modular arithmetic is arithmetic on remainders.
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Consider expressions of 7 and 4 in terms of multiples of 3 plus remainders:
7 = 2 · 3 + 1 and 4 = 1 · 3 + 1. Now 11 = 7 + 4 = (2 · 3 + 1) + (1 · 3) + 1 = 3 · 3 + 2.
Note that the sum of the remainders was < 3 and was the new remainder itself.

If the remainder is ≥ 3, we can just pull a three out of it: 11 + 8 = (3 · 3 +
2) + (2 · 3 + 2) = 5 · 3 + 4. To convert this into the correct form, note that
4 = 1 · 3 + 1, and 19 = 5 · 3 + (1 · 3 + 1) = 6 · 3 + 1. We need consider only the
sum of remainders to compute the result’s remainder.

The remainder of the sum just wraps around. Think about time. If you add a
few hours and cross 12, the result just wraps around. So 1:00 is the same as
13:00 or 25:00.

We don’t identify 1:00 as just one time but a member of a set of all times that are
one hour after a multiple of 12. Similarly, we can identify numbers as elements
of sets where all members have the same remainder relative to a given divisor.

The congruence class of r modulo a is {x | ∃q : x = qa+ r}. If a number b is
in the congruence class of r modulo a, we write b ≡ r (mod a).

The canonical member of a congruence class is its least positive member. Just as
we don’t naturally consider 25:00 as 1:00, we tend to identify congruence classes
by the least r. So while 13 ≡ 87 (mod 2) is correct (both 13 and 87 are odd),
we prefer 13 ≡ 1 (mod 2).

We define addition and multiplication on entire congruence classes. For the
operation to be defined, the modulus of each class must be the same. Then we’re
adding numbers of the form b1 = q1a+ r1 for b1 ≡ r1 (mod a) and b2 = q2a+ r2

for b2 ≡ r2 (mod a). As in our example above, the remainders add. Here
b1 + b2 = q1a+ r1 + q2a+ r2 = (q1 + q2)a+ (r1 + r2) ≡ r1 + r2 (mod a).

Identifying congruence classes by their least positive element, we can write a
table showing all additions modulo 4:

+ (mod 4) 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Addition of congruence classes maintains the additive identity that we expect,
b+ 0 ≡ b (mod a).

Note that every class has an additive inverse, a class where b + (−b) ≡ 0
(mod a). Remember that we forced the residual to be positive when we defined
division. Then we can see that the inverse of 1 modulo 4 is −1 = −1 · 4 + 3 ≡ 3
(mod 4).

Another way to see this is that the canonical representation of −b is the least
number which increases b to be equal to the modulus a. So the inverse of 1 is 3
because 1 + 3 = 4 ≡ 0 (mod 4).
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We also define multiplication on congruence classes.

If b1 = q1a+ r1 and b2 = q2a+ r2, then

b1 · b2 = (q1a+ r1) · (q2a+ r2)

= q1q2a
2 + q1r2a+ q2r1a+ r1r2

= (q1q2a+ q1r2 + q2r1)a+ r1r2

≡ r1r2 (mod a).

So we need only multiply remainders.

Identifying congruence classes by their least positive element, we can write a
table showing all multiplications modulo 4:

× (mod 4) 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

Again, there is a multiplicative identity, b · 1 ≡ b (mod a).

Unlike plain integer division, some congruence classes have an inverse. The
only integer that has an integer inverse is 1. But modulo 4, both 1 and 3 have
multiplicative inverses. Here 3 · 3 = 9 ≡ 1 (mod 3).

24.5 Divisibility Rules

Using modular arithmetic and positional notation, we can derive some quick
divisibility tests.

First, consider divisibility by powers of 2 and 5. The factorization of 10 = 2 · 5,
and so 10k = 2k · 5k. So 2k | 10k and 5k | 10k, or 10k ≡ 0 (mod 2)k and 10k ≡ 0
(mod 5)k.

Now remember how to expand positional notation. We know that 1234 =
1 · 103 + 2 · 102 + 3 · 101 + 4. So 1 · 103 + 2 · 102 + 3 · 101 + 4 ≡ 0 + 0 + 0 + 4
(mod 2) ≡ 0 (mod 2). Divisibility by 2 depends only on the final digit. Similarly,
1234 ≡ 0 + 0 + 0 + 4 (mod 5), and divisibility by 5 depends only on the final
digit.

For 22 = 4 and 52 = 25, all but the last two digits are equivalent to zero. And
for 23 = 8 and 53 = 125, all but the last three digits are equivalent to zero. So
one divisibility rule:

When testing for divisibility by 2k or 5k, we need only consider the
last k digits.
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Now consider divisibility by 3 or 9. We know that 10 ≡ 1 (mod 3) and 10 ≡ 1
(mod 9). Using modular arithmetic, 123 = 1 · 102 + 2 · 10 + 3 ≡ 1 + 2 + 3
(mod 3) ≡ 6 (mod 3) ≡ 0 (mod 3). Hence 3 | 123 because the sum of its digits
is divisible by 3.

Similarly, 10 ≡ 1 (mod 3). So 123 ≡ 1 + 2 + 3 (mod 9) ≡ 6 (mod 9), and 9 - 123.
If the sum of the digits is greater than 9, simply add those digits.

Test for divisibility by 3 or 9 by adding the number’s digits and
checking that sum. If that sum is greater than 9, add the digits again.
Repeat until the result is obvious.

Other primes are not so straight-forward. Divisibility by 7 is a pain; there is an
example method in the text’s problems for Section 5.1.

The rule for 11 is worth exploring. Because 10 < 11, the canonical member of
its congruence class is just 10. But there is another member of interest, 10 ≡ −1
(mod 1)1. So you can alternate signs on alternate digits from the right. So
123456 ≡ −1 + 2− 3 + 4− 5 + 6 ≡ 3 (mod 1)1, and 11 - 123456.

For divisibility by 6, 12, 18, or other composite numbers, factor the divisor and
test for divisibility by each factor. To test for divisibility by 72 = 23 · 32 = 8 · 9,
test for divisibility by 8 and by 9.
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Homework for the seventh
week: primes, factorization,
and modular arithmetic

25.1 Homework

Notes also available as PDF.

Practice is absolutely critical in this class.

Groups are fine, turn in your own work. Homework is due in or before class on
Mondays.

• Section 5.1 (prime numbers):

– 3, 4, 5, 7

– 14, 15, 16

– 80

• Section 5.1 (factorization):

– 34-36

– 56-59

• Section 5.4 (modular arithmetic):

– 9-13 (this is modulo 5, and the inverse of a is a number b such that
a+ b ≡ 0 (mod 5))

– 29, 31
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– 33, 35, 37, 39

• Section 5.1 (divisibility rules):

– 21-24

– 43-44

– Take a familiar incomplete integer, 679 . Using the expression of
679 as N = 104 · x4 + x0 + 6790, use 8 | N to find x0? Given that,

use 9 | N to find x4. Now if 72 turkeys cost $ 679 , what is the
total?

Note that you may email homework. However, I don’t use MicrosoftTM products
(e.g. Word), and software packages are notoriously finicky about translating
mathematics.

If you’re typing it (which I advise just for practice in whatever tools you use),
you likely want to turn in a printout. If you do want to email your submission,
please produce a PDF or PostScript document.
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Solutions for seventh week’s
assignments

Also available as PDF.

26.1 Section 5.1 (prime numbers)

Problem 3 There is one even prime number, 2. The statement is false.

Problem 4 If 9 | n, then n = 9 ·k for some integer k. Then also n = 3 · (3 ·k) =
3 · k′ for an integer k′ = 3k, so 3 | n. The statement is true.

Problem 5 Here, 5 | 15 but 10 - 15, so the statement is false.

Problem 7 A number n = 1 · n. This is of the divisibility form n = 1 · n+ 0
with a remainder of zero, so n | n and n is a factor of itself. Also n · 1 = n
and n is a multiple of itself. Thus the statement is true.

Problem 14 18 = 1 · 18 = 2 · 9 = 3 · 6, so its factors are 1, 2, 3, 6, 9, and 18.

Problem 15 20 = 1 · 20 = 2 · 10 = 4 · 5, so its factors are 1, 2, 4, 5, 10, and 20.

Problem 16 28 = 1 · 28 = 2 · 14 = 4 · 7, so its factors are 1, 2, 4, 7, 14, and 28.

26.1.1 Problem 80

First evaluate M = 2 · 3 · 5 · 7 · 11 · 13 + 1 = 30031. To check if this is a prime or
composite, we need to check for factors up to

√
30031 ≈ 173.3 and hence up to

173.

Using Eratosthenes’s sieve method to search through integers:

175
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2 3 //4 5 //6 7 //8 9 ///10
11 ///12 13 ///14 ///15 ///16 17 ///18 19 ///20
////21 ///22 23 ///24 ///25 ///26 ////27 ///28 29 ///30
31 ///32 ////33 ///34 ///35 ///36 37 ///38 ////39 ///40
41 ///42 43 ///44 ///45 ///46 47 ///48 ////49 ///50
////51 ///52 53 ///54 ///55 ///56 ////57 ///58 59

Once we reach the prime 59, we find 59 | 30031 and thus 30031 is not a prime.
Its factorization is 59 · 509.

26.2 Section 5.1 (factorization)

Problem 34 425 = 52 · 17

Problem 35 663 = 3 · 13 · 17

Problem 36 885 = 3 · 5 · 59

The above could be solved by any reasonable method. As an example of the
sieve method, consider the last problem of factoring 885.

2 3 //4 5
//6 7 //8 //9 ////10

We start to list numbers up to
√

885 ≈ 29.7 but only list them one line at a time.
For the first prime, 2 - 885. Then 3 | 885 and 885/3 = 295. Only one factor of 3
can be pulled out, so 885 = 3 · 295. Now we only need to check numbers up to√

295 ≈ 17.2. The next prime 5 | 295, and 295/5 = 59. Because 5 - 59, only one
factor of five can be pulled out. Now 885 = 3 · 5 · 59.

A previous problem showed that 59 is a prime, so we could stop here. Or if
we didn’t know that 59 is prime, we need to check for factors up to

√
59 ≈ 7.7.

Only one more prime, 7, is in that range, and 7 - 59, so 59 is prime.

The prime factorization is 885 = 3 · 5 · 59.

Problem 56 48 = 24 · 31, so there are (4 + 1) · (1 + 1) = 10 factors.

Problem 57 72 = 23 · 32, so there are (3 + 1) · (2 + 1) = 12 factors.

Problem 58 144 = 122 = (22 · 31)2 = 24 · 32, so there are (4 + 1) · (2 + 1) = 15
factors.

Problem 59 28 · 32 = 2304, and there are (8 + 1) · (2 + 1) = 27 factors.
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26.3 Section 5.4 (modular arithmetic)

26.3.1 Problems 9-13

The operation table is

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Every entry is an integer no less than zero and less than five, so the operation
as defined is closed. Considering congruence classes rather than clocks, every
integer is in one congruence class, so operations that produce integers must be
closed.

The table is symmetric along its diagonal (0 · 0, 1 · 1, . . .), so the operation is
commutative. Adding 0 + a ≡ a (mod 5), so zero is the additive identity.
And adding a+ (5− a) ≡ 0 (mod 5), so 5− a is the additive inverse.

26.3.2 Other problems

Problem 29 19 = 6 · 3 + 1 and 5 = 1 · 3 + 2. So 19 6≡ 5 (mod 3).

Problem 31 The sum of the digits is 9 + 9 ≡ 0 (mod 3), so 3 | 5445 and
5445 ≡ 0 (mod 3).

Problem 33 12 + 7 = 19 ≡ 3 (mod 4).

Problem 35 35− 22 = 13 ≡ 3 (mod 5).

Problem 37 5 · 8 ≡ −1 · −1 ≡ 1 (mod 3).

Problem 39 4 · (13 + 6) = 4 · 19 ≡ 4 · 8 ≡ 4 · (−3) ≡ −12 ≡ −1 ≡ 10 (mod 11).

26.4 Section 5.1 (divisibility rules)

These can be found either with the rules in the text or by evaluating each
number:

Problem 21 5 | 25025

Problem 22 5 | 45815

Problem 23 3 | 123 456 789, 9 | 123 456 789

Problem 24 3 | 987 654 321, 9 | 987 654 321 (same digits, different order)
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Using the method described in class:

Problem 43 453 896 248 ≡ 8− 4 + 2− 6 + 9− 8 + 3− 5 + 4 ≡ 3 (mod 11), so
11 - 453 896 248.

Problem 44 522 749 913 ≡ 3− 1 + 9− 9 + 4− 7 + 2− 2 + 5 ≡ 4 (mod 11), and
11 - 522 749 913.

26.4.1 Take a familiar incomplete integer. . .

Take a familiar incomplete integer, 679 . Using the expression of
679 as N = 104 · x4 + x0 + 6790, use 8 | N to find x0. Given that,

use 9 | N to find x4. Now if 72 turkeys cost $ 679 , what is the
total?

If 8 | N , then we need only check the last three digits. So 790 + x0 = 8 · k for
some k. There are only four values of x0 worth checking: 0, 2, 4, and 8. Of
these, only 8 | 792, so x0 = 2.

Now 9 | N implies 9 | x4 · 104 + 6792. Adding just the digits suffices, so we
must solve x4 + 6 + 7 + 9 + 2 ≡ 0 (mod 9). Hence x4 + 6 ≡ 0 (mod 9), and
x4 ≡ −6 ≡ 3 (mod 9). The only such x4 that satisfies 0 ≤ x4 ≤ 9 is x4 = 3.

Thus x4 = 3, x0 = 2 and the total price is $367.92. The price per turkey is
$5.11.
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Notes for the eighth week:
GCD, LCM, ax + by = c

Notes also available as PDF.

What we covered last week:

• divisibility and prime numbers,

• factorization into primes,

• modular arithmetic,

• finding divisibility rules,

This week’s topics:

• review modular arithmetic and finding divisibility rules,

• greatest common divisors and least common factors,

• Euclid’s algorithm for greatest common divisors, and

• solving linear Diophantine equations.

These all are useful when you deal with integral numbers of things

27.1 Modular arithmetic

Remember the divisibility form for b with respect to dividing by a 6= 0,

b = q · a+ r, with 0 ≤ r < |a|.

This form is unique for a given a and b.
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Consider a = 5. There are only five possible values of r, zero through four.
Because the form is unique, we can place every b into one of r congruence
classes. Each congruence class is a set. For a = 5, we have the following classes:

{. . ., -10, -5, 0, 5, 10, . . .} = {5k + 0 | k ∈ J}
{. . ., -9, -4, 1, 6, 11, . . .} = {5k + 1 | k ∈ J}
{. . ., -8, -3, 2, 7, 12, . . .} = {5k + 2 | k ∈ J}
{. . ., -7, -2, 3, 8, 13, . . .} = {5k + 3 | k ∈ J}
{. . ., -6, -1, 4, 9, 14, . . .} = {5k + 4 | k ∈ J}

We say that two numbers are in the same congruence class for a given a by

b ≡ c (mod a).

Or b is equivalent to c modulo a. A collection of one entry from each set is called
a complete residue system. We typically select the least positive numbers,
those in bold above.

We define arithmetic on congruence classes by arithmetic on the remainders. The
remainders wrap around every multiple of the modulus. For example, addition
modulo 4 and modulo 5 are defined as follows:

+ (mod 4) 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

+ (mod 5) 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

This works as you expect. Addition is commutative and associative. There is
an additive identity, because b+ 0 ≡ 0 (mod a). Unlike the positive integers,
there also is an additive inverse for every residue because b + (a − b) ≡ 0
(mod a).

Multiplication likewise is commutative and associative, and there is a mul-
tiplicative identity, 1. The unusual aspect appears with the multiplicative
inverse. Some residues have inverses, and some don’t:

× (mod 4) 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

× (mod 5) 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

The difference here is that 5 is prime while 4 is composite. Any factor of the
modulus will not have a multiplicative inverse.
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27.2 Divisibility rules

One common application of modular arithmetic (besides telling time) is in
testing whether one integer divides another. We use modular arithmetic and
positional notation. Both help us break the larger problem, testing divisibility
of a potentially large number, into the smaller problems of breaking apart the
number and evaluating expressions in modular arithmetic.

If a | b (a divides b), then b ≡ 0 (mod a). So we can test for divisibility by
expanding b in positional notation and evaluating the operations modulo a.

When the divisor is small, a straight-forward evaluation is simplest. Because
10 ≡ 1 (mod 3), we can test for divisibility by 3 by adding the number’s digits
modulo 3. For example,

1234 ≡ 103 + 2 · 102 + 3 · 10 + 4 (mod 3)

≡ 13 + 2 · 12 + 3 · 1 + 4 (mod 3)
≡ 1 + 2 + 3 + 4 ≡ 1 + 2 + 0 + 1 ≡ 1 (mod 3).

Hence 3 - 1234. The same “trick” applies to 9 because 10 ≡ 1 (mod 9).

When the divisor is closer to a power of 10, using a negative element of the
congruence class may be useful. For 11, remember that 10 and −1 are in the
same congruence class because 10 = 0 ·11+10 and −1 = −1 ·11+10. So 10 ≡ −1
(mod 11) and we can expand the powers of ten,

1234 ≡ 103 + 2 · 102 + 3 · 10 + 4 (mod 11)

≡ (−1)3 + 2 · (−1)2 + 3 · (−1) + 4 (mod 11)
≡ −1 + 2 +−3 + 4 (mod 11) ≡ 2 (mod 11).

Hence 11 - 1234. Here, the “trick” form is that you start from the units digit
and then alternate subtracting and adding digits.

For more complicated examples, we can factor the divisor. To test if a number
is divisible by 72, factor 72 = 23 · 32 = 8 · 9. Then test if the number is divisible
by 8 and by 9.

If a | b and c | b, then it may be true that ac | b. This is certainly true of a and
b are powers of different primes. The key point is that a and b share no common
divisors. Note that 72 = 6 · 12, 6 | 24, and 12 | 24, but obviously 72 - 24 because
24 < 72.

27.3 Greatest common divisor

So finding common divisors is useful for testing divisibility. The greatest common
divisor of numerator and denominator reduces a fraction into its simplest form.
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In general, common divisors help break problems apart.

Written (a, b) or gcd(a, b), the greatest common divisor of a and b is
the largest integer d ≥ 1 that divides both a and b.

We’ll discuss a total of two methods for finding the greatest common divisor.
The first uses the prime factorization, and the second uses the divisibility form in
the Euclidean algorithm. Later we’ll extend the Euclidean algorithm to provide
integer solutions x and y to equations ax+ by = c.

The prime factorization method factors both a and b. Consider a = 1400 =
23 · 52 · 7 and b = 1350 = 2 · 33 · 52.

Lining up the factorizations and remembering that x0 = 1, we have

a = 1400 = 23·30·52·71, and
b = 1350 = 21·33 ·52·70.

Now chose the least exponent for each factor. Then

d = 21 · 30 · 52 · 70 = 50

is the greatest common divisor. For more than two integers, factor all the
integers and find the least exponents across the corresponding factors in all of
the factorizations.

For an example use, reduce a fraction a/b = 1350/1400 to its simplest form. To
do so, divide the top and bottom by d = 50. Then a/b = 1350/1400 = 27/28.

Now we can state the requirement about divisibility given some factors:

If two relatively prime integers a and b both divide c, then ab divides
c.

Some other properties of the gcd:

• Because the gcd is positive, (a, b) = (|a|, |b|).

• (a, b) = (b, a)

• If the gcd of two numbers is 1, or (a, b) = 1, then a and b are called
relatively prime.

27.4 Least common multiple

Before the other method for finding the gcd, we consider one related quantity.

The least common multiple, often written lcm(a, b), is the least
number L ≥ a and L ≥ b such that a | L and b | L.

There are clear, every day uses. Think of increasing a recipe when you can only
buy whole bags of some ingredient. You need to find the least common multiple
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of the recipe’s requirement and the bag’s quantity. Or when you need to find
the next day two different schedules intersect.

Again, you can work from the prime factorizations

a = 1400 = 23·30 ·52·71, and
b = 1350 = 21·33·52·70.

Now the least common multiple is the product of the larger exponents,

lcm(a, b) = 23 · 33 · 52 · 71 = 37 800.

And for more than two integers, take the maximum across all the exponents of
corresponding factors.

Another relation for two integers a and b is that

lcm(a, b) =
ab

d
.

So given a = 1350, b = 1400, and d = 50,

lcm(1350, 1400) =
1350 · 1400

50
=

1 890 000
50

= 37 800.

This does not hold directly for more than two integers.

27.5 Euclidean GCD algorithm

Another method for computing the gcd of two integers a and b is due to Euclid.
This often is called the first algorithm expressed as an abstract sequence of steps.

We start with the division form of b in terms of a 6= 0,

b = qa+ r with 0 ≤ r < a.

Because (a, b) = (|a|, |b|), we can assume both a and b are non-negative. And
because (a, b) = (b, a), we can assume b ≥ a.

Let d = (a, b). Last week we showed that if d|a and d|b, then d|ra+ sb for any
integers r and s. Then because d|a and d|b, we have d|b− qa or d|r. So we have
that d = (b, a) also divides r. Note that any number that divides a and r also
divides b, so d = (a, r).

Continuing, we can express a in terms of r as

a = q′r + r′ with 0 ≤ r′ < r.

Now d|r′ and d = (r, r′). Note that r′ < r < a, so the problem keeps getting
smaller! Eventually, some remainder will be zero. Then the previous remainder
is the greatest common divisor.
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1. Find q0 and r0 in b = q0a+ r0 with 0 ≤ r0 < a.

2. If r0 = 0, then (a, b) = a.

3. Let r−1 = a to make the loop easier to express.

4. Then for i = 1, . . .

(a) Find qi and ri in ri−2 = qiri−1 + ri with 0 ≤ ri < ri−1.

(b) If ri = 0, then (a, b) = ri−1 and quit.

(c) Otherwise continue to the next i.

Consider calculating (53, 77). Following the steps, we have

77 = 1 · 53 + 24,
53 = 2 · 24 + 5,
24 = 4 · 5 + 4,
5 = 1 · 4 + 1, and
4 = 4 · 1 + 0.

And thus (53, 77) = 1.

For another example, take (128, 308). Then

308 = 2 · 128 + 52,
128 = 2 · 52 + 24,
52 = 2 · 24 + 4, and
24 = 6 · 4 + 0.

So (128, 308) = 4.

27.6 Linear Diophantine equations : Likely de-
layed

Later in the semester, we will examine linear equations ax + by = c over real
numbers. But many every-day applications require integer solutions. We can
use the Euclidean algorithm to find one integer solution to ax+ by = c or prove
there are none. Then we can use the computed gcd to walk along the line to all
integer solutions.

Say we need to solve ax+ by = c for integers a, b, and c to find integer solutions
x and y. In general, equations over integers are called Diophantine equations
after Diophantus of Alexandria (approx. 200AD-290AD). He was the first known
to study these equations using algebra. The form ax+ b = c describes linear
Diophantine equations.
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Let d = (a, b). Then, as before, d | ax+ by for all integers x and y. So d | c for
any solutions to exist. If d - c, then there are no integer solutions. If a and b
are relatively prime, then (a, b) = 1 and solutions exist for any integer c.

Consider solving ax + by = d. Because d | c, we can multiply solutions to
ax+ by = d by c/d to obtain solutions of ax+ by = c. To solve ax+ by = d we
work backwards after using the Euclidean algorithm to compute d = (a, b).

Say the algorithm required k steps, so d = rk−1. Working backward one step,

d = rk−1 = rk−3 − qk−1rk−2

= r3 − qk−1(rk−4 − qk−2rk−3)
= (1 + qk−1qk−2)r3 − qk−1rk−4.

So d = rk−1 = i · rk−3 + j · rk−4 where i and j are integers. Continuing, the gcd
d can be expressed as an integer combination of each pair of remainders.

Returning to the example of (77, 53),

1 = 5− 1 · 4,
= 5− 1 · (24− 5 · 5) = 5 · 5− 1 · 24
= 5 · (53− 2 · 24)− 1 · 24 = 5 · 53− 11 · 24
= 5 · 53− 11 · (77− 1 · 53) = 16 · 53− 11 · 77.

To solve 53x+ 77y = 22, we start with 53 · 16 + 77 · (−1) = 1. Multiplying by 22,

53 · (16 · 22) + 77 · (−1 · 22) = 22,

and x = 352, y = −22 is one solution.

But if there is one solution, there are infinitely many! Remember that d = (a, b),
so a/d and b/d are integers. Given one solution x = x0 and y = y0, try
substituting x = x0 + t · (b/d) and y = y0 − t · (a/d) for any integer t. Then

a(x0 + t · (b/d)) + b(x0 − t · (a/d)) = ax0 + bx0 + t · (ab/d)) +−t · (ba/d))
= ax0 + bx0 = c.

Actually, all integer solutions to ax+ by = c are of the form

x = x0 + t · (b/d), and y = y0 − t · (a/d),

where t is any integer, d = (a, b), and x0 and y0 are a solution pair.

Another example, consider solving 12x+25y = 331. First we apply the Euclidian
algorithm to compute (12, 25) = 1:

25 = 2 · 12 + 1, and
12 = 12 · 1 + 0.
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Substituting back,

12 · (−2) + 25 · 1 = 1, and12 · (−662) + 25 · 331 = 331.

So we can generate any solution to 12x+ 25y = 331 with the equations

x = −662 + 25t and y = 331− 12t.

Using these, we can find a “smaller” solution. Try making x non-negative with

−662 + 25t ≥ 0,
25t ≥ 662, thus
t > 26.

Substituting t = 27,
x = 13, and y = 7.

Interestingly enough, this must be the only non-negative solution. A larger t will
force y negative, and a smaller t forces x negative. But the solution for t = 26 is
still “small”,

x = −12, and y = 19.
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Homework for the eighth
week: GCD, LCM,
ax + by = c

28.1 Homework

Notes also available as PDF.

Practice is absolutely critical in this class.

Groups are fine, turn in your own work. Homework is due in or before class on
Mondays.

• Exercises 5.3:

– 62, 66, 70

• Compute the following using both the prime factorization method and
the Euclidean algorithm:

– (720, 241)

– (64, 336)

– (−15, 75)

• Compute the least common multiples:

– lcm(64, 336)

– lcm(11, 17)

– lcm(121, 187)

187
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– lcm(2025, 648)

Postponed:

• Find two integer solutions to each of the following, or state why no solutions
exist:

– 64x+ 336y = 32

– 33x− 27y = 11

– 31x− 27y = 11

Note that you may email homework. However, I don’t use MicrosoftTM products
(e.g. Word), and software packages are notoriously finicky about translating
mathematics.

If you’re typing it (which I advise just for practice in whatever tools you use),
you likely want to turn in a printout. If you do want to email your submission,
please produce a PDF or PostScript document.
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Solutions for eighth week’s
assignments

Also available as PDF.

29.1 Exercises 5.3

Problem 62 If (p, q) = p, then p | q and q is a multiple of p.

Problem 66 We want the least common multiple of 6 and 10. The nights off
intersect every 30 days. July has 31 days, so by this method their next
shared day off is the 31st. On the “trick question” side, though, they may
have July 4th off together. . .

Problem 70 Here we need the greatest common divisor, (60, 72) = 12. So the
longest common length is 1 foot.

29.2 Computing GCDs

Compute the following using both the prime factorization method
and the Euclidean algorithm:

• (720, 241)

• (64, 336)

• (−15, 75)

Prime factorizations:

189
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• 241 is prime. So (720, 241) = 1.

• 64 = 26, 336 = 24 · 3 · 7. (64, 336) = 24 = 16.

• (−15, 75) = (15, 75). 15 = 3 · 5, 75 = 3 · 52, so (−15, 75) = 15.

Euclidean algorithm:

•

720 = 2 · 241 + 238,
241 = 1 · 238 + 3,
238 = 79 · 3 + 1

3 = 3 · 1 + 0.

So (720, 241) = 1.

•

336 = 5 · 64 + 16,

64 = 4 · 16 + 0.

So (336, 64) = 16.

• (−15, 75) = (15, 75):

75 = 5 · 15 + 0.

So (−15, 75) = 15.

29.3 Computing LCMs

Compute the least common multiples:

• lcm(64, 336)

• lcm(11, 17)

• lcm(121, 187)

• lcm(2025, 648)

• lcm(64, 336) = 64 · 336/(336, 64) = 1344

• Both are prime, so lcm(11, 17) = 11 · 17 = 187

• lcm(121, 187) = lcm(112, 11 · 17) = 112 · 17 = 2057

• lcm(2025, 648) = lcm(33 · 52, 23 · 34) = 23 · 34 · 52 = 16200
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Notes for the ninth week:
ax + by = c and fractions

Notes also available as PDF.

30.1 Linear Diophantine equations

In a few weeks, we will examine linear equations ax+ by = c over real numbers.
But many every-day applications require integer solutions. We can use the
Euclidean algorithm to find one integer solution to ax+ by = c or prove there
are none. Then we can use the computed gcd to walk along the line to all integer
solutions.

Some solvable problems:

A 98 pound box contains 5 pound bags of sugar and 12 pound sacks
of oranges. How many of each are in the box?

Or:

Say you need a digital image in a 4 : 3 aspect ratio (x : y) that
includes a 50 pixel border along each side. What sizes are possible
for the inner image?

Consider the latter problem. Rephrasing algebraically,

4
3

=
x+ 100
y + 100

, or

3x− 4y = 100.

We start by solving
3x− 4y = 1

191
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and then multiplying the base solutions by 100. This case has one easy solution,
x = −1 and y = −1, with 3 · −1 − 4 · −1 = −3 + 4 = 1. Another solution is
x = 3 and y = 2.

In fact, there are infintely many solutions to 3x− 4y = 1 given by

x = −1 + 4t, and
y = −1 + 3t

for any integer t. You can substitute these expressions into 3x− 4y to verify the
result. Scaling the right-hand side by 100, solutions to 3x− 4y = 100 are given
by

x = −100 + 4t, and
y = −100 + 3t.

For x > 0 and y > 0, we need t > 33. So the first positive solutions are given by
t = 34, 35, . . . and are

(x, y) ∈ {. . . , (36, 2), (40, 5), (44, 8), (48, 11), (52, 14), (56, 17), (60, 20), . . .}.

30.1.1 In general. . .

Say we need to solve ax+ by = c for integers a, b, and c to find integer solutions
x and y. In general, equations over integers are called Diophantine equations
after Diophantus of Alexandria (approx. 200AD-290AD). He was the first known
to study these equations using algebra. The form ax+ b = c describes linear
Diophantine equations.

Let d = (a, b). Then, as before, d | ax+ by for all integers x and y. So d | c for
any solutions to exist. If d - c, then there are no integer solutions. If a and b
are relatively prime, then (a, b) = 1 and solutions exist for any integer c.

Consider solving ax + by = d. Because d | c, we can multiply solutions to
ax+ by = d by c/d to obtain solutions of ax+ by = c. To solve ax+ by = d we
work backwards after using the Euclidean algorithm to compute d = (a, b).

Say the algorithm required k steps, so d = rk−1. Working backward one step,

d = rk−1 = rk−3 − qk−1rk−2

= r3 − qk−1(rk−4 − qk−2rk−3)
= (1 + qk−1qk−2)r3 − qk−1rk−4.

So d = rk−1 = i · rk−3 + j · rk−4 where i and j are integers. Continuing, the gcd
d can be expressed as an integer combination of each pair of remainders.
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Returning to the example of (77, 53), we found

77 = 1 · 53 + 24,
53 = 2 · 24 + 5,
24 = 4 · 5 + 4,
5 = 1 · 4 + 1, and
4 = 4 · 1 + 0.

Working from the second to the last,

1 = 5− 1 · 4,
= 5− 1 · (24− 5 · 5) = 5 · 5− 1 · 24
= 5 · (53− 2 · 24)− 1 · 24 = 5 · 53− 11 · 24
= 5 · 53− 11 · (77− 1 · 53) = 16 · 53− 11 · 77.

To solve 53x+ 77y = 22, we start with 53 · 16 + 77 · (−1) = 1. Multiplying by 22,

53 · (16 · 22) + 77 · (−1 · 22) = 22,

and x = 352, y = −22 is one solution.

But if there is one solution, there are infinitely many! Remember that d = (a, b),
so a/d and b/d are integers. Given one solution x = x0 and y = y0, try
substituting x = x0 + t · (b/d) and y = y0 − t · (a/d) for any integer t. Then

a(x0 + t · (b/d)) + b(x0 − t · (a/d)) = ax0 + bx0 + t · (ab/d)) +−t · (ba/d))
= ax0 + bx0 = c.

Actually, all integer solutions to ax+ by = c are of the form

x = x0 + t · (b/d), and y = y0 − t · (a/d),

where t is any integer, d = (a, b), and x0 and y0 are a solution pair.

Another example, consider solving 12x+25y = 331. First we apply the Euclidian
algorithm to compute (12, 25) = 1:

25 = 2 · 12 + 1, and
12 = 12 · 1 + 0.

Substituting back,

12 · (−2) + 25 · 1 = 1, and
12 · (−662) + 25 · 331 = 331.
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So we can generate any solution to 12x+ 25y = 331 with the equations

x = −662 + 25t and y = 331− 12t.

Using these, we can find a “smaller” solution. Try making x non-negative with

−662 + 25t ≥ 0,
25t ≥ 662, thus
t > 26.

Substituting t = 27,
x = 13, and y = 7.

Interestingly enough, this must be the only non-negative solution. A larger t will
force y negative, and a smaller t forces x negative. But the solution for t = 26 is
still “small”,

x = −12, and y = 19.

30.1.2 The other example

Our other posed problem:

A 98 pound box contains 5 pound bags of sugar and 12 pound sacks
of oranges. How many of each are in the box?

So we need to solve 5x+ 12y = 98, and start with 5x+ 12y = 1.

Computing (12, 5),

12 = 2 · 5 + 2,
5 = 2 · 2 + 1, and

2 = 2 · 1 + 0.

So (12, 5) = 1. Because 1 | 98, there are infinitely many integer solutions. We
need to find the non-negative solutions from those.

For a base solution,

1 = 5− 2 · 2
= 5− 2 · (12− 2 · 5)
= 5 · (5) + 12 · (−2).

So x0 = 5 and y0 = −2 solve 5x+ 12y = 1. Multiplying by 98,

x0 = 490 and y0 = −196

solve 5x+ 12y = 98.
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To find all solutions,

x = 490 + 12t, and
y = −196− 5t.

To find non-negative solutions, first consider how to make y positive. Here
t = −40 makes y = 4. Trying x, x = 10. So one solution is

x+ = 10 and y+ = 5.

With t = −39, y is negative. And with t = −41, x is negative. So this is the
only possible solution for the actual problem.

30.2 Into real numbers

We’ve used real numbers without much thought. For the next week and a half,
we’ll fill in a few details.

• Rational numbers

– Arithmetic and comparisons

– Decimal expansion (and other bases)

– Percentages

• Irrational numbers

– Show that non-rational real numbers exist

– Square roots, cube roots, and other radicals

• Computing

– Floating-point arithmetic (arithmetic with restricted rationals)

This week will cover topics in rational numbers and hence fractions. For some
people, this will be old hat. For others, this is a continuing thorn in their sides.

This presentation will be a bit different than the text’s more typical structure. I
hope that this difference may help some who struggle with rationals and fractions
by providing reasons for the rules.

30.2.1 Operator precedence

A quick aside on the order in which operations can be applied. Working with
fractions stress operator precedence.

Operations generally don’t pass through straight lines, whether horizontal for
fractions or vertical for absolute value.
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Parentheses force an order. Work from the inner outwards.

The general order of precedence between operations:

1. exponents, then

2. multiplication and division (which really are the same thing), then

3. addition, subtraction, and negation (again, these are the same thing).

Within a class, operations proceed from left to right.

Go through a parenthetical clause and compute every exponent, then every
multiplication from left to right, and then every addition from left to right.

When in doubt, use parentheses when you write expressions.

30.3 Rational numbers

Rational numbers are ratios of integers. In a fraction n
d , n is the numerator

and d is the denominator. The rational numbers form a set,

Q = {a
b
| a ∈ J, b ∈ J, b 6= 0},

where J is the set of all integers. Let R be the set of all real numbers, then
J ( Q ( R. The integer on top, a, is the numerator; the integer on the bottom,
b, is the denominator.

Note that this is a very formal construction. We just plop one integer atop
another and call it a number. Amazing that it works.

Fractions represent ratios and proportions. When you state that 1 in 10 people
are attractive to mosquitos1, that’s a rational number. We won’t reach probabil-
ity, where we learn to interpret these ratios correctly, but we will cover basic
manipulations of rational numbers.

Two fun points:

• There are only as many rational numbers as there are non-negative integers
(and hence integers)! Both sets are infinite, but you can construct a
mapping from each non-negative integer to and from a corresponding
fraction.

• Between any two real numbers of any sort, there is a rational number. The
size of the separation does not matter! There always exists a rational num-
ber arbitrarily close to a given real. Consider taking a decimal/calculator
expansion and chopping it off once it’s close enough.

1http://www.webmd.com/a-to-z-guides/features/are-you-mosquito-magnet

http://www.webmd.com/a-to-z-guides/features/are-you-mosquito-magnet
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30.4 Review of rational arithmetic

Rational arithmetic is based on integer arithmetic. The following properties will
be inherited by multiplication and addition for rationals q, r, and s:

closure q + r ∈ Q, qr ∈ Q

commutative q + r = r + q, qr = rq,

associative q + (r + s) = (q + r) + s, q(rs) = (qr)s, and

distributive q(r + s) = qr + qs.

One homework question is to take the operation definitions below and verify
some of these properties.

The following are somewhat formal definitions to show how to construct rationals
along strict rules.

30.4.1 Multiplication and division

We start with multiplication and division. Let a, b, k, x, y ∈ J, so all the variables
are integers. We will extend these variables to run over the rational numbers
shortly.

The definition of multiplying fractions:

a

b
· x
y

=
ax

by
.

As an example
3
7
· 5

2
=

15
14
.

The definition of a relationship between division and fractions:

a/b = a · 1
b

=
a

b
so 8/2 = a · 1

2
=

8
2
.

We need to be a little careful here. Integer division was defined only when b | a,
so this expression formally only holds when b | a. We relax this restriction later
to allow the variables to run over rational numbers.

An important consequence is that

a =
a

1

for all a.

This leads to very useful technique, expressing 1 as a fraction:

1 = k/k =
k

k
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for any k 6= 0. Remember that in the divisibility form k = 1 · k + 0, so k | k and
k/k = 1.

Next we show what the text calls “the fundamental property of rational numbers”,
which is not terribly fundamental. First we show that 1 is the multiplicative
identity for rationals by using the fact that 1 is the multiplicative identity
for integers,

a

b
· 1 =

a

b
· 1

1
=
a · 1
b · 1

=
a

b
.

Using this fact, we show that a
b = ak

bk for any k 6= 0,

a

b
=
a

b
· 1 =

a

b
· k
k

=
ak

bk
.

Now we introduce proper fractions. A proper fraction is a rational a
b where

the numerator a and denominator b are relatively prime. That is gcd(a, b) = 1
and they share no common factors. Every fraction is equal to some proper
fraction. Given gcd(a, b) = d, we can factor out the common divisor,

a

b
=
a′ · d
b′ · d

=
a′

b′
· d
d

=
a′

b′
.

So for 15 and 35, (15, 35) = 5 and

15
35

=
3 · 5
7 · 5

=
3
7
.

A fraction that is not proper is improper. An improper fraction is a redundant
representation, and keeping fractions improper sometimes helps speed operations.

Every rational number with a non-zero numerator has a multiplicative inverse.
This uses only the expression for 1 and the relationship between integer division
and fractions. Using that a/a = 1 and commutativity of integer multiplication,

1 = (ab)/(ab) =
ab

ab
=
ab

ba
=
a

b
· b
a
.

So if a 6= 0, then b
a is the multiplicative inverse of a

b . As an example,

3
5
· 5

3
=

15
15

= 1.

With a multiplicative inverse, we can define division of rationals analogously
to the fractional form of division of integers,

a

b
/
x

y
=
a

b
· y
x

=
ay

bx
.

For example,
3
5
/

5
7

=
3
5
· 7

5
=

21
25
.
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30.4.2 Addition and subtraction

When adding rational numbers, you must ensure both ratios have the same
denominators. This is the same as ensuring measurements are all in the same
units; both numerators need measured by the same denominator.

The definition for adding fractions:

a

b
+
x

y
=
ay

by
+
bx

by
=
ay + bx

by
.

Later we will use the least common multiple of b and y to work with a smaller
initial denominator. So

1
2

+
1
3

=
3
6

+
2
6

=
5
6
.

Rational numbers have additive identities:

a

b
+

0
b

=
a+ 0
b

=
a

b
.

We prefer there to be only one additive identity. We can use the “fundamental
property” above to prove that all additive identities are equal to 0

1 :

0
b

=
0 · b
1 · b

=
0
1
· b
b

=
0
1
· 1 =

0
1
.

Given that 1 | 0, 0
1 = 0/1 = 0. So zero is the additive identity for rationals as

well as integers.

Like integers, rationals have additive inverses:

a

b
+
−a
b

=
a+−a

b
=

0
b

= 0.

Given the additive inverse exists, we can define the negation of a rational as

− a

b
=
−a
b
,

and then we define subtraction in terms of addition as

a

b
− x

y
=
a

b
+
−x
y

=
ay − bx
xy

.

So
1
2
− 1

3
=

3
6

+
−2
6

=
1
6
.
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30.4.3 Comparing fractions

We start with some high-level definitions and find the common product rule for
comparing fractions.

First, a quick review of integer ordering. We say an integer is negative if it has
a negative sign, e.g. -1. An integer is positive if it is neither zero nor negative,
or equivalently if the integer is also a counting number. We start an ordering of
the integers by saying that a positive i > 0, a negative i < 0, and 0 = 0.

Then we can compare two integers i and j by their difference. There are three
cases:

• If i− j > 0, then i > j.

• If i− j < 0, then i < j.

• Finally, if i− j = 0, then i = j.

This phrasing may help with the common confusion regarding comparisons and
multiplication by negative numbers.

Consider two integers 3 < 5. That 3 < 5 implies 3− 5 < 0 (and we know it is -2).
Now multiply both sides here by -1. If 3− 5 < 0, that implies 3− 5 is negative,
and in turn −1 · (3 − 5) = 5 − 3 = 2 is positive. Thus multiplying both sides
by -1 (and hence any negative number) requires reversing the comparison. Here
−1·(3−5) = 5−3 > 0. But by the distributive property, −1·(3−5) = (−3)−(−5)
as well, so (−3)− (−5) > 0 and −3 > −5.

Returning to rationals, the integers are a subset, so an order on the rationals
should respect the same ordering on the integer subset.

A positive fraction is equal to some fraction where both the numerator and
denominator are positive integers. So both the numerator and denominator must
have the same sign,

3
5
, or

−3
−5

=
3
5
· −1
−1

=
3
5
.

A negative fraction is equal to some fraction where the numerator is negative
and the denominator is positive. Here the signs must be opposite,

−3
5
, or

3
−5

=
−3
5
· −1
−1

=
−3
5
.

As we saw with the additive identity, a zero fraction is equal to the integer
zero and has a zero numerator. The sign of zero does not matter in rational
arithmetic (although it may in a computer’s floating-point arithmetic).

Given two rationals r and q, r is strictly less than q, r < q, if q − r is positive.
Thus

qn
qd
− rn
rd

=
qnrd − qdrn

qdrd
> 0.
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We can always move negative signs into the numerator, so we assume that qd
and rd are positive. But remember to convert the fraction into having
a positive denominator! Then the above relation

qnrd − qdrn > 0 or, equivalently, qnrd > qdrn.

So
qn
qd

>
rn
rd

when qnrd > qdrn.

By symmetry, then we can compare two rational numbers by comparing appro-
priate products.

• If qnrd > qdrn, then qn

qd
> rn

rd
.

• If qnrd < qdrn, then qn

qd
< rn

rd
.

• If qnrd = qdrn, then qn

qd
= rn

rd
.

Consider comparing 1
2 and 1

3 ,

1 · 3 > 1 · 2⇒ 1
2
>

1
3
.

And for the negations −1
2 and −1

3 ,

−1 · 3 < −1 · 2⇒ −1
2
<
−1
3
.

As an example of why you need to force the denominator to be positive, consider
1
2 and −1

−3 .

1 · −3 < −1 · 2 6⇒ 1
2
<

1
3
.

This is because we are in essence multiplying both sides by the product of their
denominators. That product is negative, so we would have to flip the sign. It’s
just as easy to remember to make the denominator positive.

30.5 Complex fractions

So far, the numerator and denominator have been integers. We can loosen
the definition slightly and allow complex fractions where the numerator and
denominator are rational numbers. We extend the division definition to map
complex fractions into fractions with integral numerators and denominators,

a
b
x
y

=
a

b
/
x

y
=
a

b
· y
x

=
ay

bx
.

We could use this definition to show that all the arithmetic operations work as
expected on complex fractions.
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Working with complex fractions sometimes allows adding fractions without using
a massive denominator.

Let L be the least common multiple of b and y. Then b | L and y | L, so L/b
and L/y are integers. We can manipulate the addition definition slightly by
introducing L,

a

b
+
x

y
=

a
b

1
+

x
y

1
=
a · 1

b

1
+
x · 1

y

1

=
L

L
·

(
a · 1

b

1
+
x · 1

y

1

)

=
a · Lb
L

+
x · Ly
L

=
a(L/b)
L

+
x(L/y)
L

=
a(L/b) + x(L/y)

L
.

With 75 = lcm(15, 25),

7
15

+
8
25

=
7 · 3 + 8 · 5

75
=

61
75
.

Quite often there is less work in reducing the result into proper form if you use
the least common multiple as the denominator.



Chapter 31

Homework for the ninth
week: ax + by = c and
fractions

31.1 Homework

Notes also available as PDF.

Practice is absolutely critical in this class.

Groups are fine, turn in your own work. Homework is due in or before class on
Mondays.

• Find two integer solutions to each of the following, or state why no solutions
exist:

– 64x+ 336y = 32

– 33x− 27y = 11

– 31x− 27y = 11

• Problem set 6.3:

– 5, 6, 9, 10, 13, 14

– even numbers from 20 up to and including 36

– 39, 40

– 57, 58 (alas, I don’t think I’ll have time to discuss why continued
fractions are very interesting and useful)

203
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Note that you may email homework. However, I don’t use MicrosoftTM products
(e.g. Word), and software packages are notoriously finicky about translating
mathematics.

If you’re typing it (which I advise just for practice in whatever tools you use),
you likely want to turn in a printout. If you do want to email your submission,
please produce a PDF or PostScript document.



Chapter 32

Solutions for ninth week’s
assignments

Also available as PDF.

32.1 Linear Diophantine equations

Find two integer solutions to each of the following, or state why no
solutions exist:

• 64x+ 336y = 32

• 33x− 27y = 11

• 31x− 27y = 11

• From a previous problem, we have that 336 = 64 · 5 + 16. Thus 336 · 1 +
64 · −5 = 16 and 336 · 2 + 64 · −10 = 32. So one solution is x0 = −10 and
y0 = 2. The general solution is x = x0 + t · 336/(336, 64) = −10 + 21t and
y = y0 − t · 64/(336, 64) = 2− 4t for any integer t. Another solution then
is x(1) = −10 + 1 · 21 = 11 and y(1) = 2− 4 · 1 = −2.

• Here, (33, 27) = (3 · 11, 33) = 3. Now 3 - 11, so there are no solutions.

• Now 31 is prime, so (31, 27) = 1 | 11 and there are solutions. Running
through the Euclidean algorithm we see that

31 = 27 · 1 + 4,
27 = 4 · 6 + 3, and
4 = 3 · 1 + 1.

205
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Starting from the bottom and substituting for the previous remainder,

4 + 3 · (−1) = 1,
4 + (27 + 4 · (−6)) · −1 = 27 · (−1) + 4 · 7 = 1,

27 · (−1) + (31 + 27 · (−1)) · 7 = 31 · 7 + 27 · (−8) = 1.

We find that 31 · 7 + 27 · (−8) = 1, so 31x− 27y = 11 has an initial solution
of x0 = 7 · 11 = 77 and y0 = −1 · −8 · 11 = 88.

The general solutions have the form

x = x0 + t
−27

(31, 27)
= 77− 27t, and

y = y0 − t
31

(31, 27)
= 88− 31t,

Another solution is given by x(1) = 77− 27 · 1 = 50 and y(1) = 88− 31 · 1 = 57.

32.2 Exercises 6.3

Problem 5 16
48 = 16·1

16·3 = 1
3

Problem 6 21
28 = 7·3

7·4 = 3
4

Problem 9 3
8 = 5·3

5·8 = 15
40 , 3

8 = −1·3
−1·8 = −3

−8 , 3
8 = 2·3

2·8 = 6
16

Problem 10 9
10 = −2·9

−2·10 = −18
−20 , 9

10 = 2·9
2·10 = 18

20 , 9
10 = 11·9

11·10 = 99
110

Problem 13 • 2
6 = 1

3

• 1
4

• 4
10 = 2

5

• 3
9 = 1

3

Problem 14 • 12
24 = 1

2

• 6
24 = 1

4

• 12
16 = 3

4

• 2
16 = 1

8

Problem 20 8
9

Problem 22 41
90

Problem 24 14
60 = 7

30
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Problem 26 41
60

Problem 28 3
28

Problem 30 −1
6

Problem 32 1
4

Problem 34 −3
10

Problem 36 −3
20

Problem 39 13
3

Problem 40 31
8

Problem 57

2 +
1

1 + 1
3+ 1

2

= 2 +
1

1 + 2
7

= 2 +
7
9

=
25
9

Problem 58

4 +
1

2 + 1
1+ 1

3

= 4 +
1

2 + 3
4

= 4 +
4
11

=
48
11
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Chapter 33

Notes for the tenth week:
Irrationals and decimals

Notes also available as PDF.

• exponents, roots, and irrationals

• decimals and percentages

• floating-point arithmetic

exponents, roots, and irrationals

• exponents, rules, etc.

• extending to negative exponents: rationals

• extending to rational exponents leads to roots

• roots to/from exponents

33.1 Real numbers

We won’t define the real numbers. That requires more time than we can allow
here. We will simply use the reals, denoted R, as more than the rationals.
This was the state of affairs until around 1872 when Richard Dedekind finally
discovered a way to construct real numbers formally.

So the reals fit into our system of sets on the very top,

natural numbers ( whole numbers ( J ( Q ( R.

Look up the term “Dedekind cut” for more on actually defining real numbers.

209
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33.2 Exponents and roots

We will cover:

• definition for positive integer exponents,

• rules,

• zero exponents,

• negative exponents, and

• rational exponents and roots.

33.2.1 Positive exponents

We’ve already used positive exponents when discussing the digit representation
of numbers:

10 = 10 = 101

100 = 10 · 10 = 102

1000 = 10 · 10 · 10 = 103

10000 = 10 · 10 · 10 · 10 = 104

...
...

...

In general, for any number (integer, rational, or real), the number raised to an
integer exponent is defined as:

a1 = a,

a2 = a · a,
a3 = a · a · a,

...

ak =
k︷ ︸︸ ︷

a · a · a · . . . · a .

For example,

23 = 8, and(
2
3

)2

=
4
9
.
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Negative numbers have signs that bounce around:

(−5)1 = −5,

(−5)2 = 25,

(−5)3 = −125, and

(−5)4 = 625.

With the symbolic definition, we can show other properties of exponentiation:

(ab)3 = (ab) · (ab) · (ab)
= (a · a · a) · (b · b · b) (by commutativity and associativity)

= a3 · b3.

In general,
(ab)k = akbk.

For example,
1000 = 103 = (2 · 5)3 = 23 · 53 = 8 · 125.

Or when multiplying numbers raised to powers, we have that exponents add as
in

ak · am =
k︷ ︸︸ ︷

a · . . . · a ·
m︷ ︸︸ ︷

a · . . . · a

=
k+m︷ ︸︸ ︷

a · · · · · a
= ak+m.

For example,
102 · 103 = 100 · 1000 = 100000 = 105.

And numbers raised to powers multiple times multiply exponents as in

(ak)m =

m︷ ︸︸ ︷
ak · ak · ak · . . . · ak = akm.

For example,
1002 = (102)2 = 104 = 10000.

33.2.2 Zero exponent

Consider the following relationship between integer exponents and division:

a3 = a4/a,

a2 = a3/a, and

a1 = a2/a.
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Reasoning inductively, we suspect that

a0 = a1/a = 1.

Using the rule above for adding exponents along with the additive identity
property that k + 0 = k, we can deduce that

ak = ak+0 = ak · a0.

So for any a 6= 0,
a0 = 1 when a 6= 0.

Why can’t we define this for a = 0? 0k = 0 for any integer k > 0. So
0 = 0k = 0k · 00 does not help to define 00; we’re left with 0 = 0 · 00. Because
0 · x = 0 for any x, 00 can be anything.

Examples:

50 = 1

(−73)0 = 1

00 is undefined . . .

33.2.3 Negative exponents

Continuing inductively for a 6= 0,

a0 = 1,

a−1 = a0/a =
1
a
, and

a−2 = a−1/a =
1
a
· 1
a

=
1
a2
.

Again, we can use the fact that exponents add to derive this deductively :

1 = a0 = ak+−k = ak · a−k,

and so a−k is the multiplicative inverse of ak, and we previously showed that to
be 1

ak . We have shown that

a−k =
1
ak

for all a 6= 0.

For example:

2−2 =
1
22

=
1
4
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is the inverse of
22 = 4.

Also, (
2
3

)−1

=
1
2
3

=
3
2

is the multiplicative inverse of
2
3
.

And (
2
3

)−2

=
1

( 2
3 )2

=
1
4
9

=
9
4

is the multiplicative inverse of (
2
3

)2

=
2
3
.

33.2.4 Rational exponents and roots

So we’ve played with division and exponents. Consider now reasoning inductively
using the multiplication rule for exponents:

a4 = (a2)2,

a2 = (a1)2, and so

a1 = (a
1
2 )2.

We call a
1
2 the square root of a and write

√
a.

But
√
a is only defined some of the time. Over integers, there clearly is no

integer b such that b2 = 2, so
√

2 is not defined over the integers and fractional
exponents are not closed over integers.

Also, the product of two negative numbers is positive, and the product of two
positive numbers is positive, so there is no real number whose square is negative.
Hence for real a, √

a is undefined for a < 0.
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Remember that (−b)2 = (−1)2 ·b2 = b2, so the square root may be either positive
or negative!

22 = 4,

(−2)2 = 4, hence
√

4 = ±2.

In most circumstances,
√
a means the positive root, often called the principal

square root. When you hit a square-root key or apply a square root in a
spreadsheet, you get the principal square root.

Other rationals provide other roots:

a1 = (a
1
3 )3

is the cube root,
3
√
a = a

1
3 .

Here, though, (−a)3 = (−1)3 · a3 = −(a3), and there is no worry about the sign
of the cube root.

Using (ak)m = akm, we also have

a
2
3 = 3
√
a2 = ( 3

√
a)2

The exponential operator can be defined on more than just the rationals, but we
won’t go there. However, remember that I mentioned the rationals are dense in
the reals. There is a rational number close

33.2.5 Irrational numbers

There are more reals than rationals. This is a very non-obvious statement. To
justify it, we will

• prove that
√

2 is not rational, and

• generalize that proof to other roots.

Remember the table to show that there are as many integers as rationals? You
cannot construct one for the reals. I might show that someday. It’s shockingly
simple but still a mind-bender. But for now, a few simple examples suffice to
make the point.

Theorem: The number
√

2 is not rational.

Proof. Suppose
√

2 were a rational number. Then
√

2 =
a

b
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for some integers a and b. We will show that any such a and b, two must divide
both and so (a, b) ≥ 2. Previously, we explained that any fraction can be reduced
to have (a, b) = 1. Proving that (a, b) ≥ 2 shows that we cannot write

√
2 as a

fraction.

Now if
√

2 = a
b , then 2 = a2

b2 and 2b2 = a2. Because 2 | 2b2, we also know that
2 | a2. In turn, 2 | a2 and 2 being prime imply that 2 | a and thus a = 2q for
some integer q.

With a = 2q, a2 = 4q2. And with a2 = 2b2, 2b2 = 4q2 or b2 = 2q2. Now 2 | b as
well as 2 | a, so (a, b) ≥ 2.

Theorem: Suppose x and n are positive integers and that n
√
x is rational. Then

n
√
x is an integer.

Proof. Because n
√
a is rational and positive, there are positive integers a and b

such that
n
√
x =

a

b
.

We can assume further that the fraction is in lowest terms, so (a, b) = 1. Now
we show that b = 1.

As in the previous proof, n
√
x = a

b implies that x · bn = an.

If b ≥ 1, there is a prime p that divides b. And as before, p | b implies
p | a, contradicting the assumption that (a, b) = 1. Thus b = 1 and n

√
x is an

integer.

With decimal expansions, we will see that rational numbers have repeating
expansions. Irrational numbers have decimal expansions that never repeat.
There are some fascinating properties of the expansions

Irrational numbers come in two kinds, algebraic and transcendental. We
won’t go into the difference in detail, but numbers like

√
2 are algebraic, and

numbers like π and e are transcendental.

33.3 Decimal expansions and percentages

Remember positional notation:

1 234 = 1 · 103 + 2 · 102 + 3 · 101 + 4 · 100.

Given negative exponents, we can expand to the right of 100. General English
notation uses a decimal point to separate the integer portion of the number
from the rest.
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So with the same notation,

1 234.567 = 1 · 103 + 2 · 102 + 3 · 101 + 4 · 100

+5 · 10−1 + 6 · 10−2 + 7 · 10−3.

Operations work in exactly the same digit-by-digit manner as before. When any
position goes over 9, a factor of 10 carries into the next higher power of 10. If
any digit becomes negative, a factor of 10 is borrowed frrom the next higher
power of 10.

Other languages use a comma to separate the integer from the rest and also use
a period to mark off powers of three on the other side, for example

1, 234.567 = 1.234, 567.

You may see this if you play with “locales” in various software packages. Obvi-
ously, this can lead to massive confusion among travellers. (A price of 1.234 is
not less than 2 but rather greater than 1000.)

Typical international mathematical and science publications use a period to
separate the integer and use a space to break groups of three:

1, 234.567 = 1 234.567.

33.3.1 Representing rationals with decimals

What is the part to the right of the decimal point? It often is called the
fractional part of the number, giving away that it is a representation of a
fraction.

Here we consider the decimal representation of rational numbers 1
a for different

integers a. We will see that the expansions fall into two categories:

1. some terminate after a few digits, leaving the rest zero; and

2. some repeat a trailing section of digits.

For rational numbers, these are the only two possibilities.

We can find the decimal expansions by long division.

Two simple examples that terminate:
0. 5

2 1. 0
−1. 0

0. 2
5 1. 0
−1. 0

Note that 2 | 10 and 5 | 10, so both expansions terminate immediately with
1
2 = .5 and 1

5 = .2.
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Actually, all fractions with a denominator consisting of powers of 2 and five have
terminating expansions. For example,

1
22

=
1
4

= 0.25,

1
53

=
1

125
= 0.008, and

1
2 · 52

=
1
50

= 0.02.

What if the denominator a in 1
a does not divide 10, or a - 10? Then the expansion

does not terminate, but it does repeat. If the denominator has no factors of 2
or 5, it repeats immediately.

Examples of repeating decimal expansions:
0. 3 3 . . .

3 1. 0 0 0
−. 9

. 1 0
− 9

1 0

0. 1 4 2 8 5 7 1 . . .
7 1. 0 0 0 0 0 0 0 0
−. 7

3 0
− 2 8

2 0
− 1 4

6 0
− 5 6

4 0
− 3 5

5 0
− 4 9

1 0
− 7

3

We write these with a bar over the repeating portion, as in

1
3

= 0.3, and

1
7

= 0.142857.

We say that 0.3 has a period of 1 and 0.142857 has a period of 6.

We could write 0.2 = 0.20, but generally we say that this terminates once we
reach the repeting zeros.

If the denominator a contains factors of 2 or 5, the repeating portion occurs a
number of places after the decimal. For example, consider 1

6 = 1
2·3 and 1

45 = 1
5·9 :
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0. 1 6 6 . . .
6 1. 0 0 0 0
−. 6

4 0
− 3 6

4 0

0. 0 2 2 . . .
45 1. 0 0 0 0
−. 9 0

1 0 0
− 9 0

1 0

So the decimal representations are

1
6

= 0.16, and

1
45

= 0.02.

The hard way to determine the period of a repeating fraction

Note that for all non-negative integer k,

10k ≡ 0 (mod 2),

10k ≡ 0 (mod 5), and

10k ≡ 1 (mod 3).

These tell us that the expansions have periods of 0, 0, and 1.

For seven,

100 ≡ 1 (mod 7),

101 ≡ 3 (mod 7),

102 ≡ 2 (mod 7),

103 ≡ 6 (mod 7),

104 ≡ 4 (mod 7),

105 ≡ 5 (mod 7), and

106 ≡ 1 (mod 7),

so the period is of length 7.

For 45,

100 ≡ 1 (mod 45),

101 ≡ 10 (mod 45), and

102 ≡ 10 (mod 45).
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This is a little more complicated, but the pattern shows that there is one initial
digit before hitting a repeating pattern, exactly like the expansion 1

45 = 0.02.

In each case, we are looking for the order of 10 modulo the denominator. Finding
an integer with a large order modulo another integer is a building block in RSA
encryption used in SSL (the https prefix in URLs).

33.3.2 The repeating decimal expansion may not be unique!

One common stumbling block for people is that the repeating decimal expansion
is not unique.

Let
n = 0.9 = 0.99999.

Then multiplying n by 10 shifts the decimal over one but does not alter the
pattern, so

10n = 9.9 = 9.99999.

Given

10n = 9.9, and

n = 0.9,

we can subtract n from the former.

9n = 9.9− 0.9 = 9.

With 9n = 9, we know n = 1. Thus 1 = 0.9!

This is a consequence of sums over infinite sequences, a very interesting and
useful topic for another course. But this technique is useful for proving that
rationals have repeating expansions.

33.3.3 Rationals have terminating or repeating expansions

Theorem: A decimal expansion that repeats (or terminates) represents a
rational number.

Proof. Let n be the number represented by a repeating decimal expansion.
Without loss of generality, assume that n > 0 and that the integer portion is
zero. Now let that expansion have d initial digits and then a period of length
p. Here we let a terminating decimal be represented by trailing 0 digits with a
period of 1.
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For example, let d = 4 and p = 5. Then n looks like

n = 0 . d1d2d3d4p1p2p3p4p5.

Then 10dn leaves the repeating portion to the right of the decimal. Following
our example d = 4 and p = 5,

104n = d1d2d3d4 . p1p2p3p4p5.

Because it repeats, 10d+pn has the same pattern to the right of the decimal. In
our running example,

104+5n = d1d2d3d4p1p2p3p4p5 . p1p2p3p4p5.

So 10d+pn− 10dn has zeros to the right of the decimal and is an integer k. In
our example,

k = 104+5n− 104n = d1d2d3d4p1p2p3p4p5 − d1d2d3d4.

We assumed n > 0, so the difference above is a positive integer. The fractional
parts cancel out.

Now n = k
10d+p−10d is one integer over another and thus is rational.

Theorem: All rational numbers have repeating or terminating decimal expan-
sions.

Proof. This is a very different style of proof, using what we have called the
pidgeonhole principle. Without loss of generality, assume the rational number
of interest is of the form 1

d for some positive integer d.

At each step in long division, there are only d possible remainers. If some
remainder is 0, the expansion terminates.

If no remainder is 0, then there are only d−1 possible remainders that appear. If
the expansion is taken to length d, some remainder must appear twice. Because
of the long division procedure, equal remainders leave equal sub-problems, and
thus the expansion repeats.

33.3.4 Therefore, irrationals have non-repeating expansions.

So we know that any repeating or terminating decimal expansion represents a
rational, and that all rationals have terminating or repeating decimal expansions.

Thus, we have the following:
Corollary: A number is rational if and only if it has a repeating decimal
expansion.
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So if there is no repeating portion, the number is irrational. One example,

0.101001000100001 · · · ,

has an increasing number of zero digits between each one digit. This number is
irrational.

It’s beyond our scope to prove that π is irrational, but it is. Thus the digits of π
do not repeat.

33.3.5 Percentages as rationals and decimals

Percentage comes from per centile, or part per 100. So a direct numerical
equivalent to 85% is

85% =
85
100

= .85.

We can expand fractions to include decimals in the numerator and denominator.
The decimals are just rationals in another form, and we already explored “complex
fractions” with rational numerators and denominators.

So we can express decimal percentages,

85.75% =
85.75
100

= .8575.

Everything else “just works”. To convert a fraction into a percentage, there are
two routes. One is to convert the denominator into 100:

1
2

=
50
100

= 50%.

Another is to produce the decimal expansion and then multiply that by 100:

1
7

= 0.142857 = 14.2857142857%.

Converting a percentage into a proper fraction required dropping the percentage
into the numerator and then manipulating it appropriately:

85.75% =
85.75
100

=
8575
100

100
=

8575
10000

=
343
400

.

33.4 Fixed and floating-point arithmetic

So far we have considered infinite expansions, ones that are not limited to a set
number of digits. Computers (and calculators) cannot store infinite expansions
that do not repeat, and those that do require more overhead than they are worth.
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Instead, computers round infinite results to have at most a fixed number
of significant digits. Operations on these limited representations incur some
round-off error, leading to a tension between computing speed and the precision
of computed results. One important fact to bear in mind is that precision
does not imply accuracy. The following is a very precise but completely
in-accurate statement:

The moon is made of Camembert cheese.

First we’ll cover different rounding rules from the perspective of fixed-point
arithmetic, or arithmetic using a set number of digits to the right of the decimal
plce. Then we’ll explain floating-point arithmetic where the decimal point
“floats” through a fixed number of significant digits.

We will not cover the errors in floating-point operations, but we will cover the
errors that come from typical binary representation of decimal data.

The points you need to take away from this are the following:

• Using a limited number of digits (or bits) to represent real numbers leads
to some inherent, representationall error.

• Representing every-day decimal quantities in binary also incurs some
representational error.

Despite the doom-like points above, floating-point arithmetic often provides
results that are accurate enough. We won’t be able to cover why this is, but the
high-level reasons include:

• using far more digits of precision than initially appear necessary, and

• carrying intermediate results to even higher precision.

33.4.1 Rounding rules

Generally, computer arithmetic can be modelled as computing the exact result
and then rounding that exact result into an economical representation.

truncation or rounding to zero With this rounding method, digits beyond
the stored digits are simply dropped.

rounding half-way away from zero This is the text’s method of “round half
up”. A number is rounded to the nearest representable number. In the
half-way case, where the digits beyond the number of digits stored are
5000 · · · , the number is rounded upwards.

rounding half-way to even This is the preferred method for rounding in
general. A number is rounded to the nearest representable number. In
the half-way case, where the digits beyond the number of digits stored are
5000 · · · , the number is rounded so the final stored digit is even.
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There are more rounding methods, but these suffice for our discussion. Rounding
rules are hugely important in banking and finance, and there are quite a few
versions required by different regulations and laws.

Examples of each rounding method above, rounding to two places after the
decimal point:

initial number truncate round half up round to nearest even
1
3 = 0.3 0.33 0.33 0.33

1
7 = 0.142857 0.14 0.14 0.14

0.444 0.44 0.44 0.44
0.445 0.44 0.45 0.44
0.4451 0.44 0.45 0.45
0.446 0.44 0.45 0.45
0.455 0.44 0.46 0.46

Rounding error is the absolute difference between the exact number and the
rounded, stored representation. In the table above, the rounding error in
representing 1

3 is | 13 − 0.33| = | 13 −
33
100 | = |

100
300 −

99
300 | =

1
300 = 0.003. Note that

here the rounding error is 1% of the exact result. That error is large because we
use only two digits.

Note that you cannot round in stages. Consider round-to-nearest-even applied
to 0.99455 and rounding to two places after the point:

Incorrect Correct

0.99455 0.99455
0.9946
0.995
1.00 0.99

33.4.2 Floating-point representation

Consider repeatedly dividing by 10 in fixed-point arithmetic that carries two
digits beyond the decimal:

1÷ 10 = 0.10,
0.1÷ 10 = 0.01,

0.01÷ 10 = 0.00.

So ( ( 1÷ 10 )÷ 10 )÷ 10 evaluates to 0! This phenomenon is called underflow,
where a number grows too small to be represented. A similar phenomenon,
overflow, occurs when a number becomes too large to be represented. Computer
arithmetics differ on how they handle over- and underflow, but generally overflow
produces an ∞ symbol and underflow produces 0.

Floating-point arithmetic compensates for this by carrying a fixed number of
significant digits rather than a fixed number of fractional digits. The position
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of the decimal place is carried in an explicit, integer exponent. This allows
floating-point numbers to store a wider range and actually makes analysis of the
round-off error easier.

In floating-point arithmetic,

1÷ 10 = 1.000 · 100,

0.1÷ 10 = 1.000 · 10−1,

0.01÷ 101.000 · 10−2,

...

This continues until we run out of representable range for the integer exponents.
We leave the details of floating-point underflow for another day (if you’re unlucky).

33.4.3 Binary fractional parts

Just as integers can be converted to other bases, fractional parts can be converted
as well.

Each position to the right of the point (no longer the decimal point) corresponds
to a power of the base. For binary, the typical computer representation,

1
2

= 2−1 = 0.12 = 0.5,

1
4

= 2−2 = 0.012 = 0.25,

1
8

= 2−3 = 0.0012 = 0.125.

So a binary fractional part can be expanded with powers of two:

0.11012 =
1
21

+
1
22

+
0
23

+
1
24

= 0.8125.

To find a binary expansion, we need to carry out long division in base 2. I won’t
ask you to do that.

The important part to recognize is that finite decimal expansions may have
infinite, repeating binary expansions! Remember that in decimal, 2 | 10 and
5 | 10, so negative powers of 2 and 5 have terminating decimal expansions. In
binary, only 2 | 2, so only powers of 2 have terminating binary expansions.

Numbers you expect to be exact are not. Consider 0.1. Its binary expansion is

0.1 = 0.000112.
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A five-bit fixed-point representation would use

0.1 ≈ 0.000112.

The error in representing this with a five-digit fixed-point representation is
0.00625, or over 6%.

In a five-bit floating-point representation,

0.1 ≈ 1.10012 · 2−4.

The error here is less than 0.0024, or less than 0.24%. You can see what
floating-point gains here.

Ultimately, though, in a limited binary fractional representation, adding ten
dimes does not equal one dollar! This is why often programs slanted towards
finance (e.g. spreadsheets) use a form of decimal arithmetic. On current common
hardware, decimal arithmetic is implemented in software rather than hardware
and is orders of magnitude slower than binary arithmetic.
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Chapter 34

Homework for the tenth
week: Irrationals and
decimals

34.1 Homework

Notes also available as PDF.

Practice is absolutely critical in this class.

Groups are fine, turn in your own work. Homework is due in or before class on
Mondays.

• Problem set 6.4:

– 15, 16

– 25-28 (Note: If you write these as a
1
2 , you can use the rule (ab)k = akbk

and the factorization of each number to simplify the expressions. That
summarizes the text’s examples.)

– 41-44 (Again, think of these as fractional exponents. Use the fac-
torizations of each number under the square root, and then use the
distributive property to pull out common factors.)

– 49

– 81

• Problem set 6.3:

– 75, 76, 79, 80 (calculators are fine, but correctly denote what repeats)

227
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– 86, 87, 88

– 95, 96

• Problem set 6.5:

– 1-5

• On rounding and floating point arithmetic:

– Round each of the following to the nearest tenth (one place after the
decimal) using round to nearest even, round to zero (trunca-
tion), and round half-up:

∗ 86.548

∗ 86.554

∗ 86.55

– Compute the following quantities with a computer or a calculator.
Write what type of computer/calculator you used and the
software package if it’s a computer. Compute it as shown. Do
not simplify the expression before computing it, and do not re-enter
the intermediate results into the calculator or computer program. Also
compute the expressions that do not include 1016 by hand exactly.
There should be a difference between the exact result and the displayed
result in some of these cases. Remember to work from the innermost
parentheses outward.

∗ (

10 times︷ ︸︸ ︷
0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1)− 1

∗ ( (

10 times︷ ︸︸ ︷
0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1) −1)×

1016, where 1016 often is entered as 1e16. If the result overflows
(signals an error) on various calculators, replace 1016 by 108 in
this and later portions.

∗ ( ( (2÷ 3) − 1) × 3) + 1

∗ ( ( ( (2÷ 3) − 1) × 3) + 1) × 1016

∗ ( ( (6÷ 7) − 1) × 7) + 1

∗ ( ( ( (6÷ 7) − 1) × 7) + 1) × 1016

The object of this first part is to demonstrate round-off error. The
first to problems, adding 0.1 repeatedly, may see no error if the device
calculates in decimal. The latter four parts should see some error
regardless of the base used.

– Now copy down the number displayed by the first calculation in each
of the following. Re-enter it as x in the second calculation.
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∗ 1÷ 3, then 1÷ 3− x where x is the number displayed.

∗ If you have a calculator or program with π, π, then π − x where
x is the number displayed.

The object here is to see that the number displayed often is not the
number the computer or calculator has stored.

Note that you may email homework. However, I don’t use MicrosoftTM products
(e.g. Word), and software packages are notoriously finicky about translating
mathematics.

If you’re typing it (which I advise just for practice in whatever tools you use),
you likely want to turn in a printout. If you do want to email your submission,
please produce a PDF or PostScript document.
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Chapter 35

Solutions for tenth week’s
assignments

Also available as PDF.

35.1 Exercises 6.4

Problem 15 The sum is 0.8, which is rational. So the sum of two irrationals
may be rational. That should not be surprising; 2 −

√
2 and

√
2 are

irrational, but their sum is the rational 2.

Problem 16 The sum is 0.262662666 . . ., which is not repeating or terminating
and thus is irrational. So the sum of two irrationals, like

√
2 and

√
2, can

be irrational, like 2
√

2.

Problem 25
√

50 =
√

2 · 52 = (2 · 52)
1
2 = 5

√
2 ≈ 7.07.

Problem 26
√

32 =
√

25 = 22
√

2 ≈ 5.66

Problem 27
√

75 =
√

3 · 52 = 5
√

3 ≈ 8.66

Problem 28
√

150 =
√

2 · 3 · 52 = 5
√

6 ≈ 12.25.

Problem 41 3
√

18 +
√

2 = 3 · (2 · 32)
1
2 + 2

1
2 = 9 · 2 1

2 + 2
1
2 = 10 · 2 1

2 = 10
√

2

Problem 42 2
√

48−
√

3 = 2 · (24 · 3)
1
2 − 3

1
2 = 23 · 3 1

2 − 3
1
2 = 7

√
3

Problem 43 −
√

12+
√

75 = −(22 ·3)
1
2 +(3·52)

1
2 = −2·3 1

2 +5·3 1
2 = (5−2)

√
3 =

3
√

3

Problem 44 2
√

27−
√

300 = 2 · (33)
1
2 − (3 · 102)

1
2 = 6 · 3 1

2 − 10 · 3 1
2 = −4

√
3

231
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Problem 49 P = 2π
√

5.1
32 ≈ 2.5. Note that 32 is an approximation to gravita-

tional acceleration.

Problem 81 Approximating:
1.110 1.01100 1.0011000 1.000110000 1.00001100000

2.5937 2.7048 2.7169 2.7181 2.7183
0.95418e 0.99505e 0.99950e 0.99095e 1.00000e

The constant e = limn→∞(1 + 1
n )n, and the experimental results above

bear this out. The first few digits converge very quickly.

35.2 Exercises 6.3

Problem 75 0.75

Problem 76 0.875

Problem 79 0.27

Problem 80 0.81

Problem 86 0.105 = 105
1000 = 21

200

Problem 87 0.934 = 934
1000 = 467

500

Problem 88 0.7984 = 7984
10000 = 499

625

Problem 95 • 1
3 = 0.3

• 2
3 = 0.6

• 1
3 + 2

3 = 0.3 + 0.6 = 0.9

• As covered in class, repeating nines are equal to a one one digit over,
so 0.9 = 1.

Problem 96 Here, 3 · 0.3 = 0.9 = 1.

35.3 Exercises 6.5

Problem 1 3.00 · 12 = 36, true

Problem 2 0.25 = 25
100 = 1

4 , true

Problem 3 Rounding 759.367 to the second place beyond the decimal should
give either 759.37 or 759.36 depending on the rounding rule. false

Problem 4 With round-to-nearest (even or upwards), this is true.

Problem 5 0.50 = 50
100 = 1

2 , true
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35.4 Rounding and floating-point

35.4.1 Rounding

Round each of the following to the nearest tenth (one place after the
decimal) using round to nearest even, round to zero (trunca-
tion), and round half-up:

• 86.548

• 86.554

• 86.55

Number Round to nearest even Truncate Round half-up

86.548 86.5 86.5 86.5
86.554 86.6 86.5 86.6
86.55 86.6 86.5 86.6

35.4.2 Errors in computations

Compute the following quantities with a computer or a calculator.
Write what type of computer/calculator you used and the
software package if it’s a computer. Compute it as shown. Do
not simplify the expression before computing it, and do not re-enter
the intermediate results into the calculator or computer program.
Also compute the expressions that do not include 1016 by hand
exactly. There should be a difference between the exact result and
the displayed result in some of these cases. Remember to work from
the innermost parentheses outward.

• (

10 times︷ ︸︸ ︷
0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1)− 1

• ( (

10 times︷ ︸︸ ︷
0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1)−1)×

1016, where 1016 often is entered as 1e16. If the result overflows
(signals an error) on various calculators, replace 1016 by 108 in
this and later portions.

• ( ( (2÷ 3) − 1) × 3) + 1

• ( ( ( (2÷ 3) − 1) × 3) + 1) × 1016

• ( ( (6÷ 7) − 1) × 7) + 1

• ( ( ( (6÷ 7) − 1) × 7) + 1) × 1016
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The object of this first part is to demonstrate round-off error. The
first to problems, adding 0.1 repeatedly, may see no error if the device
calculates in decimal. The latter four parts should see some error
regardless of the base used.

Using Octave on a 64-bit Intel-based machine with the “short” display format:

• −1.1102 · 10−16

• −1.1102

• 0 : Sometimes errors cancel themselves out. Not every computational error
is bad.

• 0

• −4.4409 · 10−16

• −4.4409

35.4.3 Extra digits

Now copy down the number displayed by the first calculation in each
of the following. Re-enter it as x in the second calculation.

• 1÷ 3, then 1÷ 3− x where x is the number displayed.

• If you have a calculator or program with π, π, then π−x where
x is the number displayed.

The object here is to see that the number displayed often is not the
number the computer or calculator has stored.

Using Octave on a 64-bit Intel-based machine with the “short” display format:

• 1 / 3 produces 0.33333. Then (1/3) - 0.33333 produces 3.3333e-06
or 3.3333 · 10−6.

• pi produces 3.1416, and pi - 3.1416 produces -7.3464e-06 or −7.3464·
10−6.

http://www.octave.org/
http://www.octave.org/


Chapter 36

Second exam and solutions

Available as PDF.
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Part IV

Notes for chapters 7 and 8
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Chapter 37

Notes for the twelfth week

(Still in progress)

Notes also available as PDF. For now, graphs are only in the PDF ver-
sion.

37.1 Covered So Far

• Problem solving techniques

– Pólya’s principles:

1. Understand the problem

2. Make a plan

3. Carry out the plan

4. Look back at what you’ve done

– We will be covering algebra and graphs as means for rephrasing and
understanding problems.

• Technical vocabulary for mathematics: sets and logic

– We need a basic vocabulary for describing mathematical entities.

– Will be using sets to describe equation solutions and functions.

– Logic underpins everything.

• Number sense and operations from number theory and rational arithmetic

– Gain some feeling for when numbers and solutions make sense.

– Is an even number possible? Negative number? etc.

239
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37.2 What Will Be Covered

Topic: Algebra and graphs for mathematical modeling.

A mathematical model is a mechanism used for predicting responses from
data.

• A climate modefl is a simulation that takes data (mostly satellite sensor
readings) and generates concrete predictions.

• A population model often is a formula that takes a limited set of data (e.g.
initial sizes) and produces a rough estimate of how the populations grow
and shrink.

Consider these real life “word problems.” The models often can be expressed
algebraically; we will be covering a few of these forms.

Sometimes an algebraic view, working with symbols, is the most useful, and
sometimes a graphical view, working with plots, is the most useful. Different
people and different problems may require different views for fully understanding
them. Regardless, each view can serve as a good check.

The algebraic models and relationships we will cover:

• Linear equations

– Equations in one variable: Useful for simple modeling and for describ-
ing algebraic rules. Examples:

∗ x = 5

∗ 65x+ 39 = 364

– Equations in multiple variables: Lines, planes, hyperplanes. Exam-
ples:

∗ 5x+ 2y = 7

http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Climate_model
http://www.arcytech.org/java/population/facts_math.html
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– Inequalities: Constraints on values. Examples:

∗ 5x ≤ 7

∗ 5x+ 2y ≤ 7
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– Systems: Multiple equations or inequalities. Examples:

∗ 5x+ 2y = 7, −x+ 5y = 3
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∗ 5x+ 2y ≤ 7, x ≥ 0, y > x
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• Non-linear equations

– In one variable: powers, roots, and logarithms
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37.3 An Algebraic Example

Consider the following problem:

Some proposition loses by 4 votes out of 100 votes cast. How many
voted yes and how many voted no?

One of the first questions to answer is if there is enough information to find
a solution. The answer here is yes, although it may not be obvious from the
description above.

For now, we approach this problem algebraically using symbols. This is the
approach you remember for general word problems. I won’t explain everything
here; this is an example we can use throughout. Afterwards, I’ll describe a
graphical approach we can use to quickly see if there is any hope of solution.

The first step in an algebraic approach is to assign variables to the unknowns.
Here, let Y be the number of yes votes, and let N be the number of no votes.
For now, we do not worry about requiring these to be integers or non-negative
numbers. One of the techniques in modeling and algebra is knowing what to
ignore and when to ignore it. Often, you ignore some properties of the data.
Once you have a final result or solution, you can re-apply those properties to see
if it makes sense.

Following Pólya’s principles, we next rephrase the problem by relating the
variables with equations.

loses by 4 votes: N = Y + 4
total of 100 votes: Y +N = 100
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The general algebraic method for solving systems of equations is to simplify
them into forms that lead to a result. This is a general plan for solving algebraic
problems, but it needs broken into sub-plans that may not be obvious when you
start.

Here, we can reduce the problem over two variables, Y and N , into a problem over
one variable, N , by substituting the first equation into the second’s left-hand
side:

Y +N = Y + (Y + 4) by substitution
= (Y + Y ) + 4 by the associative property
= 2Y + 4 by evaluating Y + Y .

Now we substitute 2Y + 4 for Y +N and transform both sides of 2Y + 4 = 100:

2Y + 4 = 100, inital equations
(2Y + 4)− 4 = 100− 4, subtract the same from equal quantities
2Y + (4− 4) = 96, associative property

2Y + 0 = 96, additive inverse
2Y = 96, additive identity

1
2
· 2Y =

1
2
· 96, mult. equal quantities by the same

1 · Y = 48, mult. inverse and evaluation
Y = 48, mult. identity.

Then Y = 48 and N = 100− 48 = 52. So the final path by which we solved the
problem:

1. Rephrase the problem algebraically.

2. Substitute to eliminate one variable, simplifying the problem.

3. Solve a linear equation in one variable.

4. Then substitute back to obtain the other variable.

One of the primary topics we will cover is when to skip all the intermediate
steps. Many of the algebra rules we and the text present are designed to allow
skipping from the two equations directly to 2Y + 4 = 100 and then more quickly
to Y = 48. The reasons given above are purely general, and algebraic notation
provides the means of applying those reasons generally.

Note that the answer makes sense according to what we know of the problem
domain. You cannot have fractional or negative votes. The results are positive
integers, so they make sense.

For an example where the number theory we covered helps identify a incorrect
data, consider a slight variation where N = Y + 3. From the solution above,
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we know that the difference will satisfy 2Y + 3 = 100. If Y is an integer, we
know that 2 | 2Y and 2 | 100. But 2 - 3, so we know this equality cannot have
an integer solution. So if our initial method is carried out correctly, i.e. we
substituted N = Y + 3 into N + Y = 100 correctly, we know that the problem’s
initial data must be incorrect. This is what I mean by number sense.

37.4 The Example’s Graphical Side

Thinking of the equations above as relationships, we can plot them on an N -Y
graph. I will go into lines and linear forms later. For now, it suffices to remember
Euclid’s axiom that two points define a line.

For N = Y + 4, consider the points where Y = 0 and Y = 20. These give the
values N = 4 and N = 24. Drawing a line between these points

20 40 60 80

20

40

60

80

N

Y

Now consider N + Y = 100. Two points suggest themselves immediately, one at
N = 0 and one at Y = 0. Adding a line through these points:

20 40 60 80 100

20

40

60

80

100

N

Y

Even just sketching these without being two precise shows us that the solution
may make sense. One line slopes up and one slopes down, so they will intersect
somewhere. And a quick sketch shows they intersect with both variables taking
positive numbers. This style of graphical reasoning often helps show if a
solution is possible or impossible. A quick sketch does not show that the variables
are positive integers, but the sketch does justify carrying out the algebraic work.
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37.5 Definitions

Now for the painful part. We need a common set of definitions.

• An algebraic expression is a phrase containing variables, numbers, op-
erations, and groups (parentheses). Examples:

– 5x

– 763 + 873672 + (−77 + 232)

–
√

52x+
√

11 +
√

22y

• An equation relates two algebraic expressions by equality. In some con-
texts, these also are equalities or identities. Examples:

– 5x = 763 + 873672 + (−77 + 232)

–
√

52x+
√

11 +
√

22y = 77z

• An inequality relates two algebraic expressions by a comparison. Exam-
ples:

– 5x < 763 + 873672 + (−77 + 232)

–
√

52x+
√

11 +
√

22y ≥ 77z

• More generally, equations and inequalities are called relations. Relations
also include negated equalities and inequalities (x 6= 4, 36x+ 93 6> 39).

• A variable is a symbol standing for a number or quantity. Variables can
be known or unknown.

– When solving 5x+ 7 = 83, the variable x is considered an unknown.

– But sometimes repeating a long expression, e.g.
√

238x+
√

281y

98z , be-
comes cumbersome, and you replace it with with a known variable
rather than writing it again and again.

• The degree of a variable in an expression is the largest exponent applied
to the variable. Examples:

– x has degree one, or is first degree;

– x2 has degree two, or is second degree; etc.

The degree of an expression is the largest degree of any variable in that
expression. Examples:

– 5x+ 8 has degree one, or is first degree;

– x2 + 5x+ 8 has degree two, or is second degree;

– 29x2 + 38219y + 91z3 has degree three because of z3.
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There is an unusual corner-case where the context matters. In an ex-
pression like x2y3, the degree can be two, three, or five depending on
other constraints and considerations. If you know nothing more about the
context, then often x2y3 is considered of third degree because of the y3

term. We won’t worry about these situations.

• The solution set is the set of solutions, or the set of variable values that
satisfy the given relation (equation, inequality, etc.). Examples:

– x = 5 has a solution set of {5} for x.

– N = Y + 3, N + Y = 100 has the solution set {(52, 48)} for the pair
(N,Y ).

• Equivalent equations are equations with the same solution sets. Solving
equations algebraically consists of transforming equations into simpler,
equivalent equations. For example 2Y + 4 = 100 is equivalent to 2Y = 96
and Y = 48.

Again, a bit of context can make a difference. For example, x = 5 and
y = 5 have the same solution set, but there are contexts where they are
not truely equivalent. We could define equivalence in a way to handle this
(c.f. β-reduction (beta reduction) in programming language theory), but
that’s beyond our scope.

• Equivalent inequalities and relations are defined similarly.

37.6 Algebraic Rules for Transformations Between
Equivalent Equations

• Adding (or subtracting) an equal quantity to (or from) both sides.

• Multiplying an equal, non-zero quantity on both sides.

• Dividing or multiplying by the reciprocal of a non-zero quantity on both
sides.

• Applying arithmetic properties to rearrange expressions.

• Substitution of like relations.

Each of these keeps the solution set invariant or unchanging. Invariance is
a very powerful property. (See the story of Emmy Noether, who used the
properties of invariants to fundamentally change not only abstract algebra but
also mathematical physics.)

We won’t prove these, but we will provide general examples to justify them.

http://en.wikipedia.org/wiki/Emmy_Noether
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• Adding / subtracting the same quantity:

x+ 15 = 20
(x+ 15)− 15 = 20− 15 subtracting 15 from both sides
x+ (15− 15) = 5 associative property and evaluation

x+ 0 = 5 additive inverse
x = 5 additive identity

Sometimes we may add a variable to each side. For example:

x− y = 5− y
(x− y) + y = (5− y) + y

x = 5

demonstrates that the value of x does not depend on y.

• Multiplying (or dividing by) an equal, known non-zero quantity on both
sides:

5x = 1
1
5
· (5x) =

1
5
· 1

(
1
5
· 5) · x =

1
5

1 · x =
1
5

x =
1
5

In this case, we are working with a constant 5 6= 0, so taking the reciprocal
(or dividing) is well-defined.

• Multiplying (or dividing by) an equal, unknown quantity on both sides.
We must take care not to divide by zero. Consider

xy = 1.

Here, we know that y 6= 0 and x 6= 0, otherwise xy = 0. So here it is safe
to move y over as in

x =
1
y
.

But in
xy = z

for some unknown z, we cannot say if x or y are zero!
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• Arithmetic manipulations. Evaluating expressions and applying associa-
tive, commutative, and distributive properties to simplify the expression.
Commonly referred to as “collecting like terms,” or gathering all coefficients
of the same variable.

2 + (3 + x)− 7 + 2(x+ y) = −2 + 3x+ 2y

(x2 + 11) + x(3x+ 4) = 4x2 + 4x+ 11

• Substituting like quantities. We used this in the example above to reduce
from a two variable system,

Y +N = 100, and
N = Y + 4,

to the single equation 2Y + 4 = 100.

37.7 Transformation Examples

See the text’s Examples 1, 2, and 3 in Section 7.1. For example 3, you can add
the fractions directly without multiplying by the common denominator as well.
Multiplying the second fraction by 3

3 gives

(x+ 7) + 3(2x− 8)
6

=
7x− 17

6
= −4.

37.8 Manipulating Formulæ by Transformations

Consider an equation for the perimeter of a rectangle, P = 2L+ 2W . When you
need to compute one variable from the others, treat the variables you know as
numbers. To compute the length L given the perimeter P and width W , classify

• P and W as known variables, and

• L as the unknown variable.

To find a formula for L, treat P and W as if they were numbers and solve for L.

2L+ 2W = P,

2L = P − 2W by subtracting 2W from both sides, and

L =
P − 2W

2
by dividing by the non-zero constant two.
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Chapter 38

Homework for the twelfth
week

38.1 Homework

Notes also available as PDF.

Practice is absolutely critical in this class.

Groups are fine, turn in your own work. Homework is due in or before class on
Mondays.

• Exercises for 7.1:

– 1, 2, 3, 4

– 9, 10, 17, 18, 25, 26, 36, 37

– Assume no variable is zero: 61, 62, 68, 69

– 76

• Exercises for 7.2:

– 21, 24, 26

– 43 (Example 5 is six pages before this problem in my text)

• Exercises for 8.2: delayed until next week

Note that you may email homework. However, I don’t use MicrosoftTM products
(e.g. Word), and software packages are notoriously finicky about translating
mathematics.
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If you’re typing it (which I advise just for practice in whatever tools you use),
you likely want to turn in a printout. If you do want to email your submission,
please produce a PDF or PostScript document.



Chapter 39

Solutions for twelfth week’s
assignments

Also available as PDF.

39.1 Exercises for 7.1

Problem 1 A and C are linear.

Problem 2 For B, there is an exponent of two (x2). And for D, there is an
exponent of negative one ( 1

x ).

Problem 3 Substituting, 3(6 + 4) = 3 · 10 = 30 on the left, and 5 · 6 = 30 on
the right. Hence 6 is a solution.

Problem 4 Without evaluating the expressions, we can see that substituting
−2 on the left yields an even number and that substituting −2 on the
right yields an odd number. Thus −2 cannot be a solution.

But if we want to evaluate the expressions anyways, we have 5(−2 + 4)−
3(−2+6) = 5·2−3·3 = 10−12 = −2 on the left, and 9(−2+1) = 9·−1 = −9.
Because −2 6= −9, -2 is not a solution.

Problem 9 7k + 8 = 1⇒ 7k = −7⇒ k = −1.

Problem 10 5m− 4 = 21⇒ 5m = 25⇒ m = 5.

Problem 17 2(x + 3) = −4(x + 1) ⇒ 2x + 6 = −4x − 4 ⇒ 6x = −10 → x =
−10

6 = −5
3 .

Problem 18 4(x− 9) = 8(x+ 3)⇒ 4x− 36 = 8x+ 24⇒ −60 = 4x⇒ x = −15.
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Problem 25 −[2z − (5z + 2)] = 2 + (2z + 7) ⇒ −2z + 5z + 2 = 9 + 2z ⇒
3z + 2 = 9 + 2z ⇒ z = 7.

Problem 26 −[6x − (4x + 8)] = 9 + (6x + 3) ⇒ −6x + 4x + 8 = 12 + 6x ⇒
−2x+ 8 = 12 + 6x⇒ −8x = 4⇒ x = −1

2 .

Problem 36 3x
4 + 5x

2 = 13⇒ 3x+10x
4 = 13⇒ 13

4 x = 13⇒ x = 4.

Problem 37 8x
3 −

2x
4 = −13 ⇒ 32x−6x

12 = −13 ⇒ 26
12x = −13 ⇒ x = −13·12

13·2 =
−6.

Problem 61 t = d
r

Problem 62 r = I
pt

Problem 68 r = C
2π

Problem 69 h = S−2πr2

2πr = S
2πr − r (either is fine, the latter is better for

calculators)

Problem 76 • In part a, x = 93. Then y = .1 · 93− 8.5 = 9.3− 8.5 = .8, or
800 000 tickets.

• For part b, solve .75 = .1x − 8.5 for x. Then x = (.75 + 8.5)/.1 =
9.25/.1 = 92.5. So the model predicts that the season span-
ning the latter half of 1992 through the first half of 1993
sold 750 000 tickets. But reading into a model like this is tricky. I
expect the authors intend the answer to be the 1992–1993 season.

39.2 Exercises for 7.2

Problem 21 1. Let x be the number of big-store shoppers, poor people.

2. Then x−70 = y, where y is the number of happy small-store shoppers1.

3. x+ y = 442, or x+ (x− 70) = 442.

4. From the above, 2x− 70 = 442⇒ 2x = 512⇒ x = 256.

5. So there are x = 256 big-store shoppers and y = 256 − 70 = 186
small-store shoppers.

6. The number of big-store shoppers was 70 more than the number of
small-store shoppers, and the total number of these two bookstore
types was 256 + 186 = 442.

Problem 24 Let W be the number of wins and L be the number of losses. Then
W = 3L− 2 and W +L = 82. So 3L− 2 +L = 82⇒ 4L = 84⇒ L = 21 is

1One source of local book stores is http://www.librarything.com/local/. Another is
http://www.indiebound.org/.

http://www.librarything.com/local/
http://www.indiebound.org/
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the number of losses, and W = 82− 21 = 61 is the number of wins. This
solution makes sense; both numbers are non-negative integers.

Problem 26 Let D be the number of votes for G.W. Bush, and S be the
number of votes for A. Gore. Then D + S = 537 and D = S + 5. Then
2S + 5 = 537, so S = 266 and D = 271. Again, this makes sense because
the numbers are non-negative integers.

Problem 43 Percent Investment Interest

0.03 x 0.03 · x
0.04 12 000− x 0.04 · (12 000− x)

12 000 440

So 0.03 · x+ 0.04 · (12 000− x) = 440. Solving for x, x = 4000.

He invested $4 000 at 3% interest and $8 000 at 4% interest. Checking, this
totals to 0.03 · 4000 + 0.04 · 8000 = 120 + 320 = 440.
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Chapter 40

Homework for the
thirteenth week

40.1 Homework

Notes also available as PDF.

Practice is absolutely critical in this class.

Groups are fine, turn in your own work. Homework is due in or before class on
Mondays.

• Exercises for 8.2

– 1, 2

– 9, 10

– 17, 18

– 39

– 57, 58

– 63, 64

• Exercises for 8.3

– 5, 6

– 19, 20

– 26, 28

– 39, 40
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– 60, 64

• Exercises for 8.7

– 3, 4

– 15, 16

– 24, 25

– 35, 36

• Exercises for 8.8

– 1, 2, 3, 4

– 21, 22

– 25, 26

Note that you may email homework. However, I don’t use MicrosoftTM products
(e.g. Word), and software packages are notoriously finicky about translating
mathematics.

If you’re typing it (which I advise just for practice in whatever tools you use),
you likely want to turn in a printout. If you do want to email your submission,
please produce a PDF or PostScript document.
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Solutions for the thirteenth
week’s assignments

Also available as PDF.

41.1 Exercises for 8.2

Problem 1: (0, 5), ( 5
2 , 0), (1, 3), (2, 1)

−1 1 2

2

4

6

x

y

Problem 2: (0,−6), (8, 0), (6, −3
2 ), (4,−3)
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2 4 6 8

−6

−4

−2

xy

Problem 9: Substitute 0 for y, then solve for x. Or compute the intercept
form.

Problem 10: Substitute 0 for x, then solve for y. Or compute the intercept
form.

Problem 17: In intercept form: x
5/2 + y

−5 = 1, so the intercepts are (5
2 , 0) and

(0,−5).

−1 1 2 3 4

−6

−4

−2

2

x

y

Problem 18: In intercept form: x
4/3 + y

−2 = 1, so the intercepts are ( 4
3 , 0) and

(0,−2).
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−1 −0.5 0.5 1 1.5

−3

−2

−1

x

y

Problem 39: Part a: The two points are (−1,−4) and (3, 2). Then ∆x =
3−−1 = 4, ∆y = 2−−4 = 6, so the slope is ∆y

∆x = 6
4 = 3

2 .
Part b: The two points are (1,−2) and (−3, 5). Then ∆x = −3− 1 = −4
and ∆y = 5−−2 = 7. The slope is ∆y

∆x = −7
4 .

Problem 57: L1’s slope is 7−6
−8−4 = −1

12 . L2’s slope is 5−4
−5−7 = −1

12 . The slopes
are equal, so the lines are parallel.

Problem 58: L1’s slope is 12−15
−7−9 = 3

16 . L2’s slope is 5−8
−20−−4 = −3

−16 = 3
16 .

These lines are parallel.

Problem 63: The “run”, or change along the horizontal from the back of the
deck to its fore, is 250 − 160 = 90 feet. The “rise” is the drop from the
back to the fore, or −63 feet. So the slope is −63

90 = −7
10 = −0.7. Note that

if you start at the fore and face the aft, the slope will be negated (0.7).
Both answers are correct so long as you explain the direction. In the end,
this is a 70% grade. Yes, that is steep.

Problem 64: A 13% grade is a slope of 13
100 , or 13 feet up for every 100 feet

across. Given a run of 150 feet, the maximum rise is 13
100 · 150 = 39

2 = 19.5
feet.

41.2 Exercises for 8.3

Problem 5: The slope is 0−−3
1−0 = 3. With the y-intercept of −3, the slope-

intercept form is y = 3x− 3.

Problem 6: The slope is 0−−4
2−0 = 2. With the y-intercept of −4, the slope-

intercept form is y = 2x− 4.

Problem 19: Starting with the form y − y0 = m(x − x0), substituting gives
y − 8 = −2(x− 5). Solving for y and simplifying into slope-intercept form
gives y = −2x+ 18.
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Problem 20: Starting with the form y − y0 = m(x − x0), substituting gives
y − 10 = 1(x− 12). Solving for y and simplifying into slope-intercept form
gives y = x− 2.

Problem 26: A slope of 0 is a horizontal line. Thus y = −2.

Problem 28: An undefined slope is a vertical line. Thus x = −2.

Problem 39: The points have the same y coordinate, so the line is horizontal.
Thus y = 5 with a slope of zero.

Problem 40: The points have the same y coordinate, so the line is horizontal.
Thus y = 2 with a slope of zero.

Problem 60: The slope of the latter line is −2
5 , so y − 1 = −2

5 (x − 4) is the
point-slope form. Reducing to slope-intercept form, y = −2

5 x+ 13
5 .

Problem 64: The slope of the latter line is −5
2 . Thus a perpendicular line will

have the slope 2
5 . In point-slope form, y−−7 = 2

5 (x− 2), or y = 2
5x+ −39

5
in slope-intercept form.

41.3 Exercises for 8.7

Problem 3: 5 + 1 = 6 and 5− 1 = 4, so (5, 1) is a solution.

Problem 4: 8 − −9 = 8 + 9 = 17 and 8 + −9 = 8 − 9 = −1, so (8,−9) is a
solution.

Problem 15: Starting with the matrix of coefficients,[
7 2 6
−14 −4 −12

]
,

adding twice the first row to the second produces[
7 2 6
0 0 0

]
.

Hence both lines are the same, and the solution set consists of all points
on the line 7x+ 2y = 6.

Problem 16: Here we start with [
1 −4 2
4 −16 8

]
.

Subtracting four times the first row from the second yields[
1 −4 2
0 0 0

]
.

Again, these lines are the same, and the solution set consists of all points
on the line x− 4y = 2.
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Problem 24: One method starts by solving the first equation for y = 3x− 5.
Substituting into the second, x+ 2(3x− 5) = 0 gives 7x− 10 = 0 or x = 10

7 .
Now substituting this x into y = 3x− 5 yields the solution point ( 10

7 ,
−5
7 ).

Problem 25: The second equation provides y = 2x− 1. Then the first becomes
−x− 4(2x− 1) = −14, or −9x+ 4 = −14, giving x = 2. Then y = 3 and
the solution is (2, 3)

Problem 35: Start by writing out the coefficients:3 2 1 8
2 −3 2 −16
1 4 −1 20


Now rearrange to make cancellation easier by hand:1 4 −1 20

2 −3 2 −16
3 2 1 8


(Note: If using a computer or calculator, you really should rearrange so
you always divide by the largest magnitude entry remaining in the column.
Here, I would not have altered the order. But this happens to be all-integer
if you chose the correct operations.)
Now subtract the first row from the two remaining rows:1 4 −1 20

0 −11 4 −56
0 −10 4 −52


Next, recognize that −10−−11 = 1 and subtract the second row from the
last row: 1 4 −1 20

0 −11 4 −56
0 1 0 4


Swap rows to place the second column’s 1 in the second row:1 4 −1 20

0 1 0 4
0 −11 4 −56


Add −11 times the second row to the last:1 4 −1 20

0 1 0 4
0 0 4 −12


Now divide the last by four:1 4 −1 20

0 1 0 4
0 0 1 −3
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Eliminate along the last column by adding the last row to the first:1 4 0 17
0 1 0 4
0 0 1 −3


And eliminate the rest of the second column by subtracting four times the
second row from the first: 1 0 0 1

0 1 0 4
0 0 1 −3


This gives the solution (1,4,−3).

Problem 36: Begin with: −3 1 −1 −10
−4 2 3 −1
2 3 −2 −5


Again, if you chose the order correctly, all arithmetic will be with integers.
But this time I’ll perform the operations in the sensible numerical order.
First, swap the first two rows to place the largest magnitude entry, −4, at
the top: −4 2 3 −1

−3 1 −1 −10
2 3 −2 −5


Now divide the first row by four: 1 −0.5 −0.75 0.25

−3 1 −1 −10
2 3 −2 −5


Subtract multiples of the first row from the others (−3 for the second row,
2 for the third): 1 −0.5 −0.75 0.25

0 −0.5 −3.25 −9.25
0 4 −0.5 −5.5


Swap the second and third rows:1 −0.5 −0.75 0.25

0 4 −0.5 −5.5
0 −0.5 −3.25 −9.25


Divide the second row by four:1 −0.5 −0.75 0.25

0 1 −0.125 −1.375
0 −0.5 −3.25 −9.25
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Subtract −0.5 times the second row from the third:1 −0.5 −0.75 0.25
0 1 −0.125 −1.375
0 0 −3.3125 −9.9375


Divide the third row by −3.3125:1 −0.5 −0.75 0.25

0 1 −0.125 −1.375
0 0 1 3


Subtract −0.125 times the third row from the second:1 −0.5 −0.75 0.25

0 1 0 −1
0 0 1 3


Now subtract −0.5 times the second row and −0.75 times the third row
from the first: 1 0 0 2

0 1 0 −1
0 0 1 3


This gives the solution (2,−1, 3).

Note: Solving that last problem in an environment like Octave is slightly easier:

octave> [-3 1 -1; -4 2 3; 2 3 -2] \ [-10; -1; -5]
ans =

2
-1
3

There is a lot of work in making that magic \ operator function correctly.

41.4 Exercises for 8.8

Problem 1: C: Dashed lines denote < and >.

Problem 2: A: Solid lines denote ≤ and ≥.

Problem 3: B

Problem 4: D

http://www.octave.org/
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Problem 21:

−8 −6 −4 −2 2 4 6

−6

−4

−2

2

4

Problem 22:

−4 −2 2 4 6 8 10

−6

−4

−2

2

4

Problem 25: The interesting vertices are the x- and y-intercepts along with the
intersections of those lines, along with the origin (0, 0). The intersection is
at (1.2, 1.2). All values of 5x+ 2y at these points:

Point Value

(0, 0) 0
(0, 2) 4
(3, 0) 15
(0, 6) 12

(1.5, 0) 7.5
(1.2, 1.2) 8.4

We could draw the graph to determine which vertices are in the feasible
region. Alternately, we can test points against all the inequalities, beginning
with the largest value and working downwards. The point (3, 0) does not
satisfy 4x + y ≤ 6 and is not feasible. The point (0, 6) does not satisfy
2x + 3y ≤ 6 and is not feasible. The point (1.2, 1.2) satisfies all the
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inequalities, so the largest value is 8.4 occuring at (1.2,1.2).

Problem 26: Listing all of the interesting points only once gives

Point Value

(0, 0) 0
(10, 0) 10
(4, 0) 4
(0, 10) 30

(20/3, 10/3) 50/3
(10/3, 5/3) 25/3

Now check points from the least value upwards. (0, 0) does not satisfy
5x + 2y ≥ 20. (4, 0) does not satisfy 2y ≥ x. (10/3, 5/3) satisfies every
constraint. Thus the minimal value is 25/3 at point (10/3,5/3).
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Chapter 42

Homework for the
fourteenth week

42.1 Homework

Notes also available as PDF.

Practice is absolutely critical in this class.

Groups are fine, turn in your own work. Homework is due in or before class on
Mondays.

• Exercises for 7.3

– 25, 26, 68, 70

• Exercises for 7.4

– 64, 65, 66 (note: making a profit implies R− C > 0 where R is the
revenue and C is the cost)

• Exercises in 7.5

– 60, two different ways. First, substitute points into x2+(x+30)2−1502

and plot the line segments. Try x ∈ {80, 85, 90, 95, 100}. In this
case, you’ll happen to find the answer. For the other way, use the
Pythagorean theorm as in the text.

• Exercises in 8.1

– 56: Use the point formula for a line,

x− x0

x1 − x0
=

y − y0

y1 − y0
,
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to determine the equation of the closest points to each requested x.
Then substitute the x value in the middle and find the y.

• Exercises in 8.3:

– 70, 72, 74

• Exercises in 8.6:

– 50

• Exercises in 8.7:

– Use either substitution or elimination: 50, 78 (yes, I had to assign a
“speed of a train leaving. . .” problem), 86

• Exercises in 8.8:

– 30, 34

Note that you may email homework. However, I don’t use MicrosoftTM products
(e.g. Word), and software packages are notoriously finicky about translating
mathematics.

If you’re typing it (which I advise just for practice in whatever tools you use),
you likely want to turn in a printout. If you do want to email your submission,
please produce a PDF or PostScript document.
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Solutions for the fourteenth
week’s assignments

Also available as PDF.

43.1 Exercises for 7.3

Problem 25 The ratio is 2.5 oz oil
1 gal gas . So given 2.75 gallons, 2.5 oz oil

1 gal gas ·2.75 gal gas =
6.875 ounces of oil are required.

Problem 26 Here the ratio is 5.5 oz oil
1 gal gas . Given 22 ounces of oil, 1 gal gas

5.5 oz oil ·
22 oz oil = 4 gallons of gas are required.

Problem 68 “Varies directly” implies a proportional relationship. Here the
ratio is 5 psi

200 deg K . So at 300 degrees Kelvin, the pressure is 5 psi
200 deg K ·

300 deg K = 7.5 psi.

Problem 70 The correct ratio here is 12 pounds
3 in , and the force to compress 5

inches is 12 pounds
3 in · 5 in = 20 pounds.

43.2 Exercises for 7.4

Problem 64 The target heart rate for a 35 year old lies in [129.5, 157.25].
Rounding this to nearest even (safer in general) gives the interval [130,157].
When dealing with intervals like these, however, rounding each endpoint
to nearest is not necessarily the best idea. In this case, the result was
within the original interval, so all numbers in the rounded interval still
satisfy the relationship. If we had rounded 129.5 to 129, then the lower
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endpoint would not have satisfied the relationship. Which direction to
round depends on the problem and assumptions in the model1. Your age:
Likely is less than mine, which in turn is less than the first part. Note that
you can treat each side, .7(220−A) and .85(220−A), as a line. Both have
negative slopes, so both decrease with increasing age.

Problem 65 At break-even, the cost C is equal to the revenue R. So at break-
even, 20x+ 100 = 24x and x = 25. Now the question becomes on which
side the company shows a profit, or R− C > 0. Substituting for R and C,
(24x)− (20x+ 100) > 0 or x > 25. The smallest whole number of units x
to show a profit is then 26 and not 25.

Problem 66 Here R = 5.5x and C = 3x + 2300, so R − C > 0 becomes
5.5x − (3x + 2300) > 0 or 2.5x > 2300 and x > 920. So the smallest
profitable x is 921.

43.3 Exercises for 7.5

When what I say clearly does not apply to the problem, you should
tell me. Here I assigned Problem 60 in Section 7.5 when I meant
Section 7.7. I’ve included the answer for the problem in Section 7.5,
even though it’s a pointless problem.

Problem 60 (p−1)3p−4 = p−3p−4 = p−7

43.4 Exercises for 7.7

Problem 60 by plotting The function to plot is y = x2 + (x+ 30)2 − 1502 =
2x2 + 60x− 21600. Evaluating at the points x ∈ {80, 85, 90, 95, 100} gives:

x 80 85 90 95 100
y -4000 -2050 0 2150 4400

So the zero is at x = 90. Plotting these segments:

1See the IEEE interval standardization group at http://www.cs.utep.edu/interval-comp/
standard.html for links to more information.

http://www.cs.utep.edu/interval-comp/standard.html
http://www.cs.utep.edu/interval-comp/standard.html
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85 90 95 100

−4,000

−2,000

2,000

4,000

x

y

Problem 60 by Pythagorean thm By the Pythagorean theorem, x2 + (x+
30)2 = 1502. Then we need to find roots of 2x2 + 60x − 21600 = 2(x2 +
30x−10800). We can solve this by simply trying points or by the quadratic
equation. For the latter, we can use the simpler x2 + 30x− 10800 and find

x =
−30±

√
302 + 4 · 10800

2

=
−30± 210

2
= −15± 105

= 90 or − 120.

For using points, find convenient numbers in the problem and try them.
Here, to numbers that pop out are 30 and 150. Evaluating at each gives
(30,−14400) and (150, 50400), so we know the zero must be somewhere
between them. Half-way is (30 + 150)/2 = 90, so trying 90 finds the
solution.

43.5 Exercises for 8.1

Problem 56, using the point form of the line The two points closest to
1985 are (1980, 4.5) and (1990, 5.2). The point form here is

x− 1980
1990− 1980

=
y − 4.5

5.2− 4.5
.

Plugging in x = 1985 and solving for y gives y = 4.85 million. Repeating
around 1995,

x− 1990
2000− 1990

=
y − 5.2

5.8− 5.2
.

Using x = 1995 gives y = 5.5 million.
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43.6 Exercises for 8.3

Problem 70 (This was the “bad graph” example I used previously to show how
a linear relationship can be hidden. We can start with the point form,

x− 150
1400− 150

=
y − 5000

24000− 5000
.

Solving for y gives the slope-intercept form,

y = 15.2x+ 2720.

To verify this, check that x = 150 gives y = 5000, and x = 1400 gives
y = 24000.

Problem 72 Part a Again, starting from point form is easiest:
x− 5
7− 5

=
y − 24075

26628− 24075
.

Solving for y,

y = 24075 +
2553

2
(x− 5)

= 1276.5x+ 17692.5.

Part b The slope from 1995 to 1997 is positive, but the graph shows a
negative slope from 1993 or 1994 to 1995. Thus the linear model above
will not approximate those well. The graph shows non-linear variation,
so there is no reason to expect the 1995–1997 line to continue to 1998,
so no to all.

Problem 74 Part a and b The points in question are (0,32) and (100,212).

Part c The slope is ∆y
∆x = 212◦F−32◦F

100◦C−0◦C = 9◦F
5◦C .

Part d The point (0, 32) provides the y-intercept, so the line is y = 9◦F
5◦Cx + 32◦F.

Part e A function of x in terms of y: x = 5◦C
9◦F (y − 32◦F).

Part f The graph shows that 50◦C is 122◦F. You can tell that the graph
is of the conversion ◦C→ ◦F because the y-intercept is positive.

43.7 Exercises for 8.6

Problem 50 At 7% compounded quarterly2, $60 000 will grow to in $60 000 ·
(1 + 0.07

4 )20 ≈ $84886.69 5 years. Compounded “continuously”3, the same
2Note that the text’s definition of “compounded quarterly” is not used by all financial

institutions. Always check how your institution defines their terms. Also, intermediate
quantities in the calculation may be rounded according to local laws and the institution’s rules.
Yes, it really is this complicated.

3Again, check with individual institutions about their definitions.
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amount will grow to $60 000 · e0.0675·5 ≈ $84086.38. Here the higher rate
compounded quarterly is the better one, with a difference of approximately
$800.32.

43.8 Exercises for 8.7

Problem 50 The nonsensical system here is W = L − 44 ft and 2L + 2W =
288 ft. Solving by substituting the former into the latter gives L =
144 ft−W = 144 ft−L+ 44 ft, so L = 94 ft. Now W = L−44 ft = 50 ft.

Problem 78 The first statement gives 150 km
T km/hr = 400 km

P km/hr or equivalently
150 km · P km/hr = 400 km · T km/hr. The second statement gives
P km/hr = 3T km/hr−20 km/hr. Solving, the plane’s speed is T km/hr =
60 km/hr, and the train’s speed is P km/hr = 160 km/hr. Plugging
these into either of the given equations verifies the solution.

Problem 86 Translating into algebra,

C = A+B + 10,
B = 2A, and

A+B + C = 490.

This is best solved by substitution. Written in terms of C, the last equation
becomes (C − 10) + C = 490, or C = 250. Now writing the first in terms
of A after substituting C, 250 = A+ 2A+ 10 or A = 80. Now B = 160.
Substituting these into the equations above verifies this solution.

43.9 Exercises for 8.8

Problem 30 Let A and B be the servings of each product. Summarizing the
information:

Product I (g/serving) II (g/serving) cost ($/serving)

A 3 2 0.25
B 2 4 0.40

So the function to minimize is the cost 0.25A + 0.40B. The constraints
are that there be at least 15 g of I, or 3A + 2B ≥ 15, and 15 g of II, or
2A+ 4B ≥ 15. There also are trivial constraints A ≥ 0 and B ≥ 0. The
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problem to solve is to

min
A,B

0.25A+ 0.40B

subject to 3A+ 2B ≥ 15,
2A+ 4B ≥ 15,
A ≥ 0, and
B ≥ 0.

The first two lines intersect at (3.75, 1.875). The A intercepts are 5 and
7.5, and only (0, 7.5) is feasible. The B intercepts are 7.5 and 3.75, and
only (7.5, 0) is feasible. So the points to check and the function values are

Point Cost

(3.75, 1.875) $1.6875
(0, 7.5) $3
(7.5, 0) $1.875

So the cheapest combination is 3.75 of A and 1.875 of B at $1.6875.

Problem 34 Summarizing and assigning variables:

Kind Variable Oven time (hr) Decorating time (hr) Profit ($)

Cookie C 1.5 2
3 20

Cake A 2 3 30

So the problem is to

max
C,A

20C + 30A

subject to 1.5C + 2A ≤ 15,
2
3
C + 3A ≤ 13,

C ≥ 0, and
A ≥ 0.

The interesting points and their values:

Point Profit ($)

(0, 0) 0
(6, 3) 210
(0, 13

3 ) 130
(10, 0) 200

So the best combination is 6 cookie batches and 3 cake batches for a
profit of $210.



Chapter 44

Third exam, due 1
December

Available as PDF. Remember, this is due on 1 December, 2008.
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Chapter 45

Third exam solutions

Available as PDF.
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Chapter 46

Final exam

Available as PDF.
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Part V

Resources
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Chapter 47

Math Lab

See the Math Lab Information Sheet for details.

Room 209 of the J. F. Hicks Memorial Library. Tutoring and additional material.
Run by Prof. Charlotte Ingram.
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Chapter 48

On-line

As with all things, question the provenance of on-line resources before relying
upon them. This list is not comprehensive and does not provide endorsements;
this list is just a starting point.

48.1 General mathematics education resources

Encyclopedia:

• Planet Math

• Wolfram Mathworld

Texts:

• Wikibooks

• George Cain’s list of online mathematics textbooks

• Alex Stef(?)’s list of texts

48.2 Useful software and applications

This list is for future reference. Each item has a somewhat steep learning curve
that is outside our scope. These may not be immediately useful for this course,
but they can be useful for playing with ideas quickly.

Exploratory and programming environments:

• Linear algebra: Octave

• Statistics: R
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http://planetmath.org/
http://mathworld.wolfram.com/
http://en.wikibooks.org/wiki/Category:Mathematics
http://www.math.gatech.edu/~cain/textbooks/onlinebooks.html
http://mathbooks.110mb.com/mylist.php
http://www.octave.org
http://www.r-project.org
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• Geometry: Geomview

• Algebra: Maxima, YACAS, others. . .

• Spreadsheet: OpenOffice, SIAG, others. . . Note: spreadsheets often are
made notorious for their poor quality arithmetic.

http://www.geomview.org
http://maxima.sourceforge.net/
http://yacas.sourceforge.net/
http://en.wikipedia.org/wiki/Category:Free_computer_algebra_systems
http://www.go-oo.org
http://siag.nu/siag/
http://en.wikipedia.org/wiki/Category:Free_spreadsheet_software
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