Math 202 notes

Jason Riedy

25 August, 2008

Contents

1	Review	1
2	Draw a diagram, follow dependencies2.1Understanding the problem2.2Devise a plan2.3Carry out the plan2.4Looking back	1 2 2 3 3
3	Look for a pattern 3.1 Example: What is the last digit of 7^{100}	4 4
4	Patterns and representative special cases4.1Sums over Pascal's triangle4.1.1Problem: What is the sum of the 20 th row? The 200 th ?	5 6 6
5	Homework	7

Notes also available as PDF.

1 Review

2 Draw a diagram, follow dependencies

Talk about a coincidence, although clearly the example has no relationship to actual car models. Example 1.5 from the text, but done a little differently.

Example 1.5: Draw a diagram

In a stock car race the firist five finishers in some order were a Ford, a Pontiac, a Chevy, a Buick, and a Dodge.

1. The Ford finished seven seconds before the Chevy.

- 2. The Pontiac finished six seconds after the Buick.
- 3. The Dodge finished eight seconds after the Buick.
- 4. The Chevy finished two seconds before the Pontiac.

In what order did the cars finish the race?

2.1 Understanding the problem

What information do we have?

- Make of five different finishers.
- Only one dimension is involved: time.
- Four statements relating their finishing times.
- Four relative time relationships.
- The Buick is mentioned most often, but every make is mentioned at least once and no relationships are obviously repeated.

Is this enough information?

- Five cars, four relationships, one dimension.
- Consider: (car)-(car)-(car)-(car). Four relationships.
- Could be exactly enough information.

Try rephrasing the problem.

- Place five points (F, P, C, B, and D) on a line such that
 - 1. F is seven units to the right of C,
 - 2. P is six units to the left of B,
 - 3. D is eight units to the left of B, and
 - 4. C is two units to the right of P.

2.2 Devise a plan

- All distances are relative. We need a starting point.
- Pick one. B volunteers by appearing twice.
- Apply all relationships with B on the right.
- Then we will have two new cars placed. Use all relationships with those on the right.
- Repeat until finished or stuck.

• If stuck with this method, is there any solution?

2.3 Carry out the plan

Now we get to draw. Sorry, but I'm just using tables.

Using relationship 2 and 3,

D(8)	-(7)						-(2) -(2)		B B	
Sim	plify	ying t	he pi	rese	ntatic	on:					
D	-	Р				- B	5				
•	N	ow we	e hav	e L) and	P ava	ilable	for reso	lving t	he rule	es.
•	• 0	nly oi	ne ap	pea	ars on	the ri	ght of	a rule,	P in r	ule 4.	
Plac	e C	by r	ule 4	:							
D	-	Р	-(1)	(C(2)		- I	3			
Now	T C	is ava	ilabl	e, s	o plac	re F b	y rule	1:			
D	-	Р	- (С	-(1)	-(2)	-(3)	B(4)	-(5)	-(6)	F(7)
Or v	with	out t	he co	ount	s:				_		
D	_	Р	- (С		- 1	в -	- F			

So the final finishing order is F, then B, then C, then P, and then D.

2.4 Looking back

- How can we check this result?
 - Did we place all the cars? Yes.
 - Did we use all the statements? Yes, so there can be no inconsistency.
- What helped with executing the plan?
 - The way the statements were written let us build a concrete plan.
 - We could follow the chain of cars.
 - Following dependencies often is called "working backwards."
- Variations on the problem:
 - Would three statements be enough?

No. All times are relative. There would be at least two groups of cars with no relationships between the groups.

- * No. One car would be left out of the relationships. Counting to determine if a problem is soluble will return.
- Would more statements guarantee a solution?
 - * No. Not if the statements are inconsistent.
 - * No. Some cars may not be related to others.
- If the statements were consistent and not repeated, how many would we need to guarantee a solution exists?
 - * The total number of consistent relationships possible is a counting problem in itself. The result is every way to choose two cars from five, "5 choose 2" = 5!/(2!(5-2)!) = 10, where 5! is "5 factorial" or 5*4*3*2*1.
 - * The minimum number of relationships is 4 (from above), the maximum is 10.
 - * There's a kind of order here from a threshold. If a solution is guaranteed by K consistent relationships, it also is guaranteed by K + 1.
 - * You could search for counter-examples from 5 to 9, or you could use the order here to bisect.

3 Look for a pattern

- Incredibly important at many levels.
- Mathematics generally is about characterizing patterns.
- Immediately useful for
 - extending from provided data, and
 - continuing *relationships* found when considering problems.

3.1 Example: What is the last digit of 7^{100}

The initial problem is straight-forward; there appears to be little more to understand. One useful relationship is that there are at most 9 possible finial digits. (Zero is not possible.)

With so few possible digits, a good initial plan is forming a table:

Number	Last digit
7^1	7
7^{2}	9
7^{3}	3
7^4	1
$7^2 \\ 7^3 \\ 7^4 \\ 7^5 \\ 7^6$	7
7^{6}	9
:	:

We certainly don't want to extend this to 7^{100} . However, note that the last digit of 7^4 is 1. Then $7 \cdot 1 = 7$ begins the pattern anew.

To check, we could guess that the last digit of 7^8 is 1. Continuing the table confirms the guess.

So 7^i has the last digit 1 for all *i* that are multiples of four. And thus the last digit of 7^{100} is 1.

4 Patterns and representative special cases

- A *special case* is quite literally a case set aside as special.
- A *representative* special case is a special case that accurately represents the general case.
- Consider teaching a property over all cases by illustrating with a specific case.
- The specific case must not depend on *which* case is used...
- Will use text's example: sums of rows of Pascal's triangle

4.1 Sums over Pascal's triangle

- A wonderful source of examples and relationships
 - Related to polynomials, probability distributions, and even fractals.

Written in rather boring table form, each entry is the sum of the entry directly above and above to the left:

0 1 1 1 1 $\mathbf{2}$ $\mathbf{2}$ 1 13 3 3 1 1 $1 = \mathbf{0} + 1$ 4 = 1 + 3 6 = 3 + 3 4 = 3 + 1 $1 = 1 + \mathbf{0}$ 4

4.1.1 Problem: What is the sum of the 20th row? The 200th?

Understanding the problem:

- How is the triangle formed?
 - Each entry is the sum of the two above.
- Can we continue this pattern? Yes.
- Do we want to write 200 rows? No.
- What else can we do?

Plan:

- Form the sums.
- Look for a pattern.
- Reason about all cases given a representative case.

The result:

#						sum
0	1					1
1	1	1				2
2	1	2	1			4
3	1	3	3	1		8
4	1	4	6	4	1	16

A guess:

- Each row's sum is twice the previous row's sum.
- Starting from the "zeroth" row as 1, the n^{th} row is 2^n .

• The next few rows check.

Consider a specific case, forming the fourth row:

#						sum
3	1	3	3	1		8
4	1 = 0 + 1	4 = 1 + 3	6 = 3 + 3	4 = 3 + 1	1 = 1 + 0	16

- What do we know about the sum of each row?
 - It's the sum of each entry.
 - In turn, each entry is the sum of two entries from the previous row.
 - So the sum must be the sum of sums of pairs from the previous row, or twice the previous row's sum.

By looking at a special case but applying only general reasoning, we have *proven* that each row's sum is twice the previous row's sum.

- We used no properties specific to the third or fourth rows.
- We could have chosen ("without loss of generality") any row and applied the same reasoning.
- Thus the reason applies to *all* rows.

And the final answers:

- $2^{20} = 1.048576$. A megabyte (MiB in correct units, not MB) is 2^{20} bytes.
- 2^{200} has 61 digits, none of which are particularly elucidating. For this style of problem, leaving 2^{200} unevaluated is much better. But, for completeness, the answer is in the notes.

 $1\,606\,938\,044\,258\,990\,275\,541\,962\,092\,341\,162\,602\,522\,202\,993\,782\,792\,835\,301\,376$

5 Homework

Groups are fine, turn in your own work. Homework is due in or before class on Mondays.

Write out (briefly) your approach to each problem.

- Patterns: What is the 87th digit past the decimal point in the expansion of 1/7?
- Patterns and related patterns: Using the result of 7^{100} above, what is the last digit of 3^{100} ?
- From problem set 1.3:

- Arithmetic progressions: problem 6 (see the text, esp. around examples 1.8 and 1.9)
- Problem 9, and feel free to criticize the use of "likely" or "probably" here as well.
- Problem 11.
- Problem 20.

Note that you may email homework. However, I don't use $Microsoft^{TM}$ products (e.g. Word), and software packages are notoriously finicky about translating mathematics.

If you're typing it (which I advise just for practice in whatever tools you use), you likely want to turn in a printout. If you do want to email your submission, please produce a PDF or PostScript document.