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What we covered last week:

• divisibility and prime numbers,

• factorization into primes,

• modular arithmetic,

• finding divisibility rules,

This week’s topics:

• review modular arithmetic and finding divisibility rules,

• greatest common divisors and least common factors,

• Euclid’s algorithm for greatest common divisors, and

• solving linear Diophantine equations.

These all are useful when you deal with integral numbers of things
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1 Modular arithmetic

Remember the divisibility form for b with respect to dividing by a 6= 0,

b = q · a + r, with 0 ≤ r < |a|.

This form is unique for a given a and b.

Consider a = 5. There are only five possible values of r, zero through four.
Because the form is unique, we can place every b into one of r congruence
classes. Each congruence class is a set. For a = 5, we have the following classes:

{. . ., -10, -5, 0, 5, 10, . . .} = {5k + 0 | k ∈ J}
{. . ., -9, -4, 1, 6, 11, . . .} = {5k + 1 | k ∈ J}
{. . ., -8, -3, 2, 7, 12, . . .} = {5k + 2 | k ∈ J}
{. . ., -7, -2, 3, 8, 13, . . .} = {5k + 3 | k ∈ J}
{. . ., -6, -1, 4, 9, 14, . . .} = {5k + 4 | k ∈ J}

We say that two numbers are in the same congruence class for a given a by

b ≡ c (mod a).

Or b is equivalent to c modulo a. A collection of one entry from each set is called
a complete residue system. We typically select the least positive numbers,
those in bold above.

We define arithmetic on congruence classes by arithmetic on the remainders. The
remainders wrap around every multiple of the modulus. For example, addition
modulo 4 and modulo 5 are defined as follows:

+ (mod 4) 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

+ (mod 5) 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

This works as you expect. Addition is commutative and associative. There is
an additive identity, because b + 0 ≡ 0 (mod a). Unlike the positive integers,
there also is an additive inverse for every residue because b + (a − b) ≡ 0
(mod a).

Multiplication likewise is commutative and associative, and there is a mul-
tiplicative identity, 1. The unusual aspect appears with the multiplicative
inverse. Some residues have inverses, and some don’t:

× (mod 4) 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

× (mod 5) 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1
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The difference here is that 5 is prime while 4 is composite. Any factor of the
modulus will not have a multiplicative inverse.

2 Divisibility rules

One common application of modular arithmetic (besides telling time) is in
testing whether one integer divides another. We use modular arithmetic and
positional notation. Both help us break the larger problem, testing divisibility
of a potentially large number, into the smaller problems of breaking apart the
number and evaluating expressions in modular arithmetic.

If a | b (a divides b), then b ≡ 0 (mod a). So we can test for divisibility by
expanding b in positional notation and evaluating the operations modulo a.

When the divisor is small, a straight-forward evaluation is simplest. Because
10 ≡ 1 (mod 3), we can test for divisibility by 3 by adding the number’s digits
modulo 3. For example,

1234 ≡ 103 + 2 · 102 + 3 · 10 + 4 (mod 3)

≡ 13 + 2 · 12 + 3 · 1 + 4 (mod 3)
≡ 1 + 2 + 3 + 4 ≡ 1 + 2 + 0 + 1 ≡ 1 (mod 3).

Hence 3 - 1234. The same “trick” applies to 9 because 10 ≡ 1 (mod 9).

When the divisor is closer to a power of 10, using a negative element of the
congruence class may be useful. For 11, remember that 10 and −1 are in the
same congruence class because 10 = 0 ·11+10 and −1 = −1 ·11+10. So 10 ≡ −1
(mod 11) and we can expand the powers of ten,

1234 ≡ 103 + 2 · 102 + 3 · 10 + 4 (mod 11)

≡ (−1)3 + 2 · (−1)2 + 3 · (−1) + 4 (mod 11)
≡ −1 + 2 +−3 + 4 (mod 11) ≡ 2 (mod 11).

Hence 11 - 1234. Here, the “trick” form is that you start from the units digit
and then alternate subtracting and adding digits.

For more complicated examples, we can factor the divisor. To test if a number
is divisible by 72, factor 72 = 23 · 32 = 8 · 9. Then test if the number is divisible
by 8 and by 9.

If a | b and c | b, then it may be true that ac | b. This is certainly true of a and
b are powers of different primes. The key point is that a and b share no common
divisors. Note that 72 = 6 · 12, 6 | 24, and 12 | 24, but obviously 72 - 24 because
24 < 72.
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3 Greatest common divisor

So finding common divisors is useful for testing divisibility. The greatest common
divisor of numerator and denominator reduces a fraction into its simplest form.
In general, common divisors help break problems apart.

Written (a, b) or gcd(a, b), the greatest common divisor of a and b is
the largest integer d ≥ 1 that divides both a and b.

We’ll discuss a total of two methods for finding the greatest common divisor.
The first uses the prime factorization, and the second uses the divisibility form in
the Euclidean algorithm. Later we’ll extend the Euclidean algorithm to provide
integer solutions x and y to equations ax + by = c.

The prime factorization method factors both a and b. Consider a = 1400 =
23 · 52 · 7 and b = 1350 = 2 · 33 · 52.

Lining up the factorizations and remembering that x0 = 1, we have

a = 1400 = 23·30·52·71, and
b = 1350 = 21·33 ·52·70.

Now chose the least exponent for each factor. Then

d = 21 · 30 · 52 · 70 = 50

is the greatest common divisor. For more than two integers, factor all the
integers and find the least exponents across the corresponding factors in all of
the factorizations.

For an example use, reduce a fraction a/b = 1350/1400 to its simplest form. To
do so, divide the top and bottom by d = 50. Then a/b = 1350/1400 = 27/28.

Now we can state the requirement about divisibility given some factors:

If two relatively prime integers a and b both divide c, then ab divides
c.

Some other properties of the gcd:

• Because the gcd is positive, (a, b) = (|a|, |b|).

• (a, b) = (b, a)

• If the gcd of two numbers is 1, or (a, b) = 1, then a and b are called
relatively prime.

4 Least common multiple

Before the other method for finding the gcd, we consider one related quantity.
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The least common multiple, often written lcm(a, b), is the least
number L ≥ a and L ≥ b such that a | L and b | L.

There are clear, every day uses. Think of increasing a recipe when you can only
buy whole bags of some ingredient. You need to find the least common multiple
of the recipe’s requirement and the bag’s quantity. Or when you need to find
the next day two different schedules intersect.

Again, you can work from the prime factorizations

a = 1400 = 23·30 ·52·71, and
b = 1350 = 21·33·52·70.

Now the least common multiple is the product of the larger exponents,

lcm(a, b) = 23 · 33 · 52 · 71 = 37 800.

And for more than two integers, take the maximum across all the exponents of
corresponding factors.

Another relation for two integers a and b is that

lcm(a, b) =
ab

d
.

So given a = 1350, b = 1400, and d = 50,

lcm(1350, 1400) =
1350 · 1400

50
=

1 890 000
50

= 37 800.

This does not hold directly for more than two integers.

5 Euclidean GCD algorithm

Another method for computing the gcd of two integers a and b is due to Euclid.
This often is called the first algorithm expressed as an abstract sequence of steps.

We start with the division form of b in terms of a 6= 0,

b = qa + r with 0 ≤ r < a.

Because (a, b) = (|a|, |b|), we can assume both a and b are non-negative. And
because (a, b) = (b, a), we can assume b ≥ a.

Let d = (a, b). Last week we showed that if d|a and d|b, then d|ra + sb for any
integers r and s. Then because d|a and d|b, we have d|b− qa or d|r. So we have
that d = (b, a) also divides r. Note that any number that divides a and r also
divides b, so d = (a, r).

Continuing, we can express a in terms of r as

a = q′r + r′ with 0 ≤ r′ < r.
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Now d|r′ and d = (r, r′). Note that r′ < r < a, so the problem keeps getting
smaller! Eventually, some remainder will be zero. Then the previous remainder
is the greatest common divisor.

1. Find q0 and r0 in b = q0a + r0 with 0 ≤ r0 < a.

2. If r0 = 0, then (a, b) = a.

3. Let r−1 = a to make the loop easier to express.

4. Then for i = 1, . . .

(a) Find qi and ri in ri−2 = qiri−1 + ri with 0 ≤ ri < ri−1.

(b) If ri = 0, then (a, b) = ri−1 and quit.

(c) Otherwise continue to the next i.

Consider calculating (53, 77). Following the steps, we have

77 = 1 · 53 + 24,

53 = 2 · 24 + 5,

24 = 4 · 5 + 4,

5 = 1 · 4 + 1, and
4 = 4 · 1 + 0.

And thus (53, 77) = 1.

For another example, take (128, 308). Then

308 = 2 · 128 + 52,

128 = 2 · 52 + 24,

52 = 2 · 24 + 4, and
24 = 6 · 4 + 0.

So (128, 308) = 4.

6 Linear Diophantine equations

Later in the semester, we will examine linear equations ax + by = c over real
numbers. But many every-day applications require integer solutions. We can
use the Euclidean algorithm to find one integer solution to ax + by = c or prove
there are none. Then we can use the computed gcd to walk along the line to all
integer solutions.

Say we need to solve ax+ by = c for integers a, b, and c to find integer solutions
x and y.
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Let d = (a, b). Then, as before, d | ax + by for all integers x and y. So d | c for
any solutions to exist. If d - c, then there are no integer solutions. If a and b
are relatively prime, then (a, b) = 1 and solutions exist for any integer c.

Consider solving ax + by = d. Because d | c, we can multiply solutions to
ax + by = d by c/d to obtain solutions of ax + by = c. To solve ax + by = d we
work backwards after using the Euclidean algorithm to compute d = (a, b).

Say the algorithm required k steps, so d = rk−1. Working backward one step,

d = rk−1 = rk−3 − qk−1rk−2

= r3 − qk−1(rk−4 − qk−2rk−3)
= (1 + qk−1qk−2)r3 − qk−1rk−4.

So d = rk−1 = i · rk−3 + j · rk−4 where i and j are integers. Continuing, the gcd
d can be expressed as an integer combination of each pair of remainders.

Returning to the example of (77, 53),

1 = 5− 1 · 4,

= 5− 1 · (24− 5 · 5) = 5 · 5− 1 · 24
= 5 · (53− 2 · 24)− 1 · 24 = 5 · 53− 11 · 24
= 5 · 53− 11 · (77− 1 · 53) = 16 · 53− 11 · 77.

To solve 53x + 77y = 22, we start with 53 · 16 + 77 · (−1) = 1. Multiplying by 22,

53 · (16 · 22) + 77 · (−1 · 22) = 22,

and x = 352, y = −22 is one solution.

But if there is one solution, there are infinitely many! Remember that d = (a, b),
so a/d and b/d are integers. Given one solution x = x0 and y = y0, try
substituting x = x0 + t · (b/d) and y = y0 − t · (a/d) for any integer t. Then

a(x0 + t · (b/d)) + b(x0 − t · (a/d)) = ax0 + bx0 + t · (ab/d)) +−t · (ba/d))
= ax0 + bx0 = c.

Actually, all integer solutions to ax + by = c are of the form

x = x0 + t · (b/d), and y = y0 − t · (a/d),

where t is any integer, d = (a, b), and x0 and y0 are a solution pair.

Another example, consider solving 12x+25y = 331. First we apply the Euclidian
algorithm to compute (12, 25) = 1:

25 = 2 · 12 + 1, and
12 = 12 · 1 + 0.
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Substituting back,

12 · (−2) + 25 · 1 = 1, and12 · (−662) + 25 · 331 = 331.

So we can generate any solution to 12x + 25y = 331 with the equations

x = −662 + 25t and y = 331− 12t.

Using these, we can find a “smaller” solution. Try making x non-negative with

−662 + 25t ≥ 0,

25t ≥ 662, thus
t > 26.

Substituting t = 27,
x = 13, and y = 7.

Interestingly enough, this must be the only non-negative solution. A larger t will
force y negative, and a smaller t forces x negative. But the solution for t = 26 is
still “small”,

x = −12, and y = 19.

7 Homework

Practice is absolutely critical in this class.

Groups are fine, turn in your own work. Homework is due in or before class on
Mondays.

• Problem set 4.3, p264:

– 6, 7, 13 (using any method, not the specified one), 15, 18, 25

• Compute the following using both the prime factorization method and
the Euclidean algorithm:

– (720, 241)

– (64, 336)

– (−15, 75)

• Compute the least common multiples:

– lcm(64, 336)

– lcm(11, 17)

– lcm(121, 187)

– lcm(2025, 648)
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• Find two integer solutions to each of the following, or state why no solutions
exist:

– 64x + 336y = 32

– 33x− 27y = 11

– 31x− 27y = 11

Note that you may email homework. However, I don’t use MicrosoftTM products
(e.g. Word), and software packages are notoriously finicky about translating
mathematics.

If you’re typing it (which I advise just for practice in whatever tools you use),
you likely want to turn in a printout. If you do want to email your submission,
please produce a PDF or PostScript document.
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