Math 202 Test and Solutions
A Little Number Theory
31 October, 2008

Ten questions, each worth the same amount. Complete five of your
choice. I will only grade the first five [ see. Make sure your name is on
the top of each page you return.

Explain your reasoning for each problem whenever appropriate; that
helps me give partial credit. Perform scratch work on scratch paper;
keep your explanations clean.

Make final answers obvious by boxing or circling them. When a question
asks you to construct a table or perform a computation, showing the
table or writing out the computation’s steps is a part of the question
and is not optional.

And remember to read and answer the entire question. There is copious
explanation before a few problems. The explanation repeats some
relevant material from class.
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1 Repeating Decimals

Another way to find the period of a decimal expansion is to consider
powers of ten. To find the period of a fraction 2 3, €xamine powers of
ten modulo d. For example, consider % = 0.3 and 1 = 0.142857. The

period of 0.3 is one, and the period of 0.142857 is six.

The following tables show the powers of ten modulo three and seven,
respectively:

i 10°'=10' (mod 3) i 10/ = 10° (mod 7)
0 1=1 (mod 3) 0 1=1 (mod 7)
1 10=1 (mod 3) 1 10=3 (mod 7)
: 2 100= 2 (mod 7)
3 1000= 6 (mod 7)
4 10000=4 (mod 7)
5 100000=5 (mod 7)
6 1000000=1 (mod 7)

In each table, a number eventually appears twice. The distance between
those two appearances is equal to the decimal expansion’s period. For 3
that difference is 1 (from 0 to 1), and for 7 the difference is 6 (from 0 to
6). Reasoning inductively, assume this is true. Note that the numbers
in the table are not the same as the digits in the expansion.

e Construct similar tables to find the periods of 2—17 and 1—11 (You
can check if you found the correct period by computing 1/27 and
1/11.)

Solution: The tables for 2% and % are:

i 10'=10° (mod 27) i 10°=10° (mod 11)
0 1=1 (mod 27) 0 1=1 (mod 11)
1 10= 10 (mod 27) 1 10=10 (mod 11)
2  100=19 (mod 27) 2 100=1 (mod 11)
3 :

1000=1 (mod 27)

The period of o= is three, and the period of = is two. You can
verify this Wlth 1/27 = 0.037 and 1/11 = 0. 09
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e Remembering that % = (.16, construct a table showing that the
period of % is 1. What number repeats?

Solution: A similar table for % = 0.16 is:
10°= 10° (mod 6)

0 1=1 (mod 6)
1 10=4 (mod 6)
2 100=4 (mod 6)

.

Here, 10’ = 4 (mod 6) for i > 0. The number 4 repeats, and
the period is one. Note that the repeating portion starts at
1 = 1 rather than ¢ = 0, corresponding to the one non-repeating
digit.



2 Positional Notation and Decimals

Write the following decimals as sums using positional notation:

o 12347=]1-10>+2-10"+3-10°+4-10 ' +7-10?]

¢ 128125 =]1-10°+2-10" +8-10°+1-10 " +2-10 2+ 5-1073

¢ 132135=1-10"+3-10°+2-10 ' +1-102+3-10 %+ 6-10*|

©0.625=6-10"4+2-102+5-10"°

Note: Small variations of the solutions throughout are fine.

Write the following binary numbers in positional notation (using powers
of 2 rather than 10) and find their decimal equivalents:

e 10000000.001, =|1-27 +1-27% = 128.125

¢ 0101, =|1-27'+1-273 = 0.625]

o 1101.0101, =|1-2%+1-22+1-2°41-27241-2* = 12.3125

Perform the following operations digit-by-digit, showing your work in
either tabular form or expanded form. Do not expand carries until the
end. For example, consider adding 30.2 4+ 79.8 = 90.1 in tabular form
showing the carries:

1 0 3

+ 7 9 .8
8 9 11

8 9 1-10' +1

8 9+1 1

8 10 1

8 1-10'+0 1

8+1 0 1

9 0 1

9 0 1

The expanded form is similar, but each line is an explicit sum with
powers of 10. Either form is acceptable.

The operations to perform:
e Base 10 (decimal): 628 + 113
Solution: Forms of 628 + 113 = 741:
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Tabular: 6 2 8
+ 1 1 3
7 3 11
7 3 10t +1
7 3+1 1
7 4 1
7 4 1
Expression:

628 + 113 = (6-10* +2- 10" + 8- 10%)
+(1-10*4+1-10" +3-10°)

=(6+1)-10°+(2+1)-10" + (8 + 3) - 10°
=7-10°+3-10" +11- 10"
=7-10°+3-10" + (1-10" +1) - 10°
=7-10*+(3+1)-10" +1-10°
=7-10°+4-10" +1-10°
=741

e Base 10 (decimal): 2.6 + 7.5
Solution: Forms of 2.6 + 7.5 = 10.1:

Tabular: 2 .6
+ 7 5

9 11

9 10'+1

941 1

10+ 0 1

1 0 1

1 0 1



Expression:

264+75=2-10°4+6-10""4+7-10°+5-107"
=(2+7)-10°+ (6 +5)- 107"
=9-10°+11-107"
=9-10°+(1-10" +1)-107*
=9.10°+1-10°+1-107"
=(9+1)-10°+1-107"
=10-10°+1-107"
=1-10'+1-107"
=10.1

e Base 2 (binary): 11015 4+ 1015 = 100105.
Solution: Entries in the tabular form all are binary.
Forms of 11015 + 1015 = 10010,:

Tabular: 1 1 0 1
+ 1 0 1
1 10 0 10
141 0 041 O
10 0 0+1 O
1 0 0 10
1 0 0 10
Expression:

11015 + 1015 = (1-2% +1-22 4 1-2%) + (1-22 +1-2%)
=1-22+(1+1)-22+(1+1)-2°
=1-2242.2242.2°
=1-2241-2241.2!
= (1+1)-2°+1-2!
=2.224+1.2!
=1-2"4+1.2!
= 10010,

e Base 2 (binary): 10015 4 1015.
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Solution: Entries in the tabular form all are binary.
Forms of 10015 + 1015 = 1110:

Tabular: 1
+

— | = ==

— = = == O

— == 0o O
—_

oSO |l oo O~

Expression:

10015+ 101y = (1-2° +1-2%) + (1-2* +1-29)
=1-22+1-22+(1+1)-2°
=1-2241-2242.2°
=1-2241-224+1.2¢
= 1110,



3 Modular Arithmetic

Remember the divisibility form or algorithm. Any integer b can be
written in terms of another integer a # 0 as

b=qg-a+r where 0<r<]|al
Recall that |a| is the absolute value of a. There are only |a| possible

remainders r. Each value defines a congruence class modulo a.

We denote that two numbers b and ¢ are in the same congruence class
modulo a by writing.

b=c¢ (mod a).

Both b and ¢ have the same remainder 7, with 0 < r < |a|, when divided
by a.

Find two additional positive members of each congruence class, and
illustrate each with a “clock-face” or “number circle” diagram showing
how many trips around a circle it takes to reach your examples:

5 (mod 7)= (mod 7) = (mod 7)
—1 (mod 3) = (mod 3) = (mod 3)

Fill in the blanks with a value at least zero and less than the modulus,
and illustrate these by hops around a number circle:

1+243= [0] (mod3)

5-7= (mod 9)

(Remember that the result must be non-negative.)

Fill in the blanks with a value at least zero and less than the modulus:
5-16]= 1 (mod 29)

1/5 = 6] (mod 29)

(Hint for above: Consider the
previous part.)

453 - (3826 +9471)= |1-(0+1)=1-1=1 (mod 2)
(Hint for above: Reduce the
numbers before computing.)

87-183635281 = |0-183635281 = 0| (mod 87)
(Hint for above: You shouldn’t
need to calculate anything.)




4 Divisibility

The division form or division algorithm expresses one integer b in terms
of another a # 0,

b=q-a+r where 0<7r<|al

The quantity ¢ is the quotient and r is the remainder. We say that a
divides b, or a | b if r = 0 in this form.

We can illustrate the division form with boxes. For example, we can
draw 11 =2-5+1 as

EEEEEEEEEEEE an]

Complete the following division forms, answer, illustrate each with a
block diagram:

e 16 =[5]-3+[1] Does 3|16? [No.]

HHHHHH\H/?){ + 1

—~—
1

| ——
5

We can use modular arithmetic (arithmetic with remainders) and po-
sitional notation (123 = 1-10% +2- 10" + 3 - 10") to assist with some
easier divisibility rules.



Because 10 = 1 (mod 3), we can expand 123 = 1-10%+2-10' +3-10° =
1-1242-1'4+3:1"=14243=1+2+0=0 (mod 3), so 3 | 123.

e Using a similar method, does 9 divide 384622036390987

Solution: Because 10 = 1 (mod 9), 9 | 38462203639098 if the
sum of 38462203639098’s digits is equivalent to zero modulo 9.
3+8+446+2+24+3+6+3+9+9+8=63=0 (mod 9), so
9 | 38462203639098.

e Does 9 divide 384622036490897 (The underlined digits are differ-
ent.)

Solution: Rather than adding all the digits again, we can look
at the difference in the individual digits. The last two are just
transposed, so their sum is the same. The change in the other
digit is 1, so we know that the sum of the digits will change by
one and 9 1 38462203649089.

e State an easy rule in English for divisibility by 9.

Solution: One easy rule is that the sum of the digits must be
divisible by 9. Another is that the sum must be equivalent to zero
modulo 9, which implies you can wrap the sum around 9 as you

go.

e What is 10* (mod 5) for k = 1 and for integers k > 1? So what
is a divisibility rule for 57
Solution: Because 10 = 2 -5, 10¥ = (2-5)* = 2F . 5*. Thus
5% | 10%, and 5 | 10" for all integer k& > 1. Using the expansion of
a number by positional notation, five divides a number if five

divides its last digit, or, equivalently, if its last digit is five or
Zero.
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5 Rational Arithmetic

The method for adding fractions can be derived as follows:

%—i-g:%-l—i—g-l mult. identity, #42|
— %l + 2—2 mult. of fractions, #46|
= Z_;Z + S—Z comm. of mult., #4]
= adb—; Cb. add frac. of equal denom., #48]

(The bold is to emphasize what changed in one line above.)

Justify each line in the derivation by labeling it with one of the following
arithmetic properties or rules:

1. additive identity
. multiplicative identity
. commutativity of addition

. commutativity of multiplication

. multiplying fractions

2
3
4
5. distributivity of multiplication over addition
6
7. 1= g for any non-zero d

8

. adding fractions of equal denominators

Compute and reduce to lowest terms by removing common factors from
the numerator and denominator:

1+1_? 3., _|3
2 3 |6] 8 |2
11 [1] 3 4 |3
2 3 |6] 8§ 7 |14
5 1 [1] 3,4 3.4 |21
6 3 |2 8’7 87 |32
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6 Distributive Property of Rational Arith-
metic

Complete the proof that rational multiplication distributes over rational
addition. That is, prove that

T a C ra xc

;'(5+3>=ﬁ+ﬁ

A skeleton[l] for the derivation, using bold to highlight a change that
might be missed:

add frac., #6]

, 5T a bd

x (g E>_§ ad +cb
Y
z

— M mul. frac., #4
ybd
d b
_ my% int. distrib., %3]
d b
— xay% int. mul. comm.,
xad cxb
_ i dd frac.
ybd | gbd add frac., #
d b
= % + ycdib int. mul. comm., #42|
ra d cx b
— % - + ﬁ 5 mul. frac., #4
xra cx d
= — . 1 _— ]_ 1 — "
— % + ;—Z mul. ident.,

w__»

Fill in the blanks in the column after with the appropriate symbolic
expression. Fill in the blanks to the right with the property or rule that
justifies the step:

1Boo.
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A

multiplicative identity

commutativity of integer multiplication
distributivity of integer multiplication over addition
multiplying fractions

1= g for any non-zero d

adding fractions
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7 Prime factorization, the GCD, and the
LCM

Factor the following numbers into products of primes raised to powers:

72 =23 . 32

1188 =|2%.33 . 11!

1170 =|2' - 32 .5 . 13]

429 =|3' .11 - 13!

188 =[22 - 47']

1001 = |7 - 11* - 13

Recall that the greatest common divisor of a and b, written (a, b), is the
largest integer that divides both a and b. The least common multiple,
lem(a, b), is the least positive integer divisible by a and b.

Using the factorizations above, provide the following results in factored
and numerical forms:

(72,30) =2 -3 —3
(1188, 188) = | 22] —[4]
(1188, 188,1001) = =
(1188, 188, 1170) = -
(1188, 1170) = ~[18]
(188, 1170) : —[2]
(1188,1001) = -
(429,1001) =|11" - 13 —[143
lem(1188,429) = |22 - 3% . 111 - 13 =
lem(429,1001) = |3 - 7% - 11" - 13| =

lem(1170,1001) = |2* - 33 -5 . 71 . 11' - 13' | =[90090
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8 Euclidean GCD algorithm

The Euclidean GCD algorithm applied to positive integers a and b uses
the division form,

b=q-a+r where 0<r7r<a,

to reduce the problem of computing (b, a) to computing (a,r). Because
r is a decreasing, non-negative integer, it eventually becomes zero and
the algorithm terminates with the non-zero number being the greatest
common divisor.

For example, consider computing (12, 8). We express 12 = 1-8+4 to see
that (12,8) = (8,4). Now 8 = 2-4 +0, so (12,8) = (8,4) = (4,0) = 4.

Use the Euclidean algorithm to compute the following, remembering to
show your work:

o (1188,188) =|(188,60) = (60,28) = (28,4) = 4

The steps of the algorithm are as follows:

1188 = 6 - 188 + 60 (1188, 188) = (188, 60)
188 = 3 - 60 + 28 (188,60) = (60, 28)
60 =2-28+4 (60,28) = (28, 4)
28 =7-4+0 (28,4) =

e (1188,1170) = |(1170,18) = 18

The steps of the algorithm are as follows:
1188 =1-1170 4 18 (1188,1170) = (1170,18)
1170 =65-18+0 (1170,18) = 18

o (188,1170) =|(1170,188) = (188,42) = (42, 20) = (20,2) = 2

The steps of the algorithm are as follows:
1170 = 6 - 188 + 42
188 =442+ 20
42=2-20+2
20=10-240

(1170, 188) = (188, 42)
(188,42) = (42, 20)
(42,20) = (20,2)

(20,2) =
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o (1188,1001) = (1001,187) = (187,66) = (66,55) = (55,11) = 11|

The steps of the algorithm are as follows:

1188 = 1-1001 + 187  (1188,1001) = (1001, 187)
1001 = 5 - 187 + 66 (1001,187) = (187, 66)
187 = 2 - 66 + 55 (187,66) = (66, 55)
66 =1-55+11 (66,55) = (55,11)
55=15-11+0 (55,11) = 11

e (429,1001) =|(1001,429) = (429,143) = 143

The steps of the algorithm are as follows:

1001 = 2- 429 + 143 (1001, 429) = (429, 143)
429 =3-143+0 (429,143) = 143

Remember that (a,b) = (b, a), so you always can place the larger number
on the left.
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9 Irrationals That Act Like Rationals

The rational numbers Q (a.k.a. fractions) are closed over addition,
subtraction, multiplication, and division (excepting division by zero).
The irrationals R \ Q are not closed over the same operations, as seen
in the homework.

However, the quadratic rationals defined as
Q(Vd) ={a+bVdlacQbeQ}
are closed for a given d!

Show that the quadratic rationals Q(v/2), or numbers of the form
a+ b\/§, are closed over addition and division.

e To show these numbers are closed under addition, first try an
example. Fill in the blanks below with numbers:

(2 +10v2) + (3 +20v2) =[5]+[30]V2.

Now try it symbolically. Fill in the blanks with the correct sym-
bolic expression:

(a4 b0V2) + (c+dvV2) =|(a+c)|+|(b+d) V2.

e To show these numbers are closed under division, again start with
an example. Compute x and y, then fill in the blanks with rational
numbers. Hint: y is an integer.

3+2vV2  3+42V2 2-1V2
2+1v2  2+41vV2 2-1V2

2 2 1

Now try it symbolically. Compute the expressions for x and v,
then fill in the blanks with rational expressions. Again, y has no
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V2 in it.

a+b\/§_a+b\/§ c—dv2
c+dv2 c+dV2 c—dv2

z | (ac —2bd) + (bc — ad)v/2
y c? — 2d2

ac — 2bd bc — ad
= 2.
c2 — 2d2 + c2 — 2d2 V2

(Note: Showing that multiplication is closed is about the same as addition
above, but it’s not included in this question. And closure over division
here is an actual use for removing irrationals from denominators.)
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10 Linear Diophantine Equations

Everyone’s favorite topic, or at least one of mine, is solving ax + by = ¢
over integers a, b, and ¢ for integer solutions x and y. We can use the
Euclidean GCD algorithm for finding an initial solution if one exists.

For an example, we solve 27x + 33y = 9. First we compute (27,33).
The steps of the Euclidean algorithm provide

33 =27-1+6,
27=6-4+3, and
6=3-2+0.

So (27,33) = 3. Because 3 | 9, there are infinitely many solutions to
272+ 33y = 9. If (27, 33) did not divide the right-hand side, there would
be no solutions.

Next we find solutions to 27v 4+ 33w = 3. Then x = 3v and y = 3w will
solve our original equation. First we re-write the equations above that
do not have a zero remainder:

3=27-146-(—4), and
6=33-1+27-(—1).

Now we start with the first equation and substitute later equations into
it until we have 3 = 27v + 33w for some integers v and w:

3=27-1+6-(—4)
=27-1+4(33-1427- (1)) - (—4)
=27-1433-(—4)+27-4
— 275433 (—4).

Thus we have a solution v = 5 and w = —4. Multiplying by 3, x = 15
and y = —12 solves our original equation, 27 - 15+ 33 - (—15) = 9.

Solve the following linear Diophantine equations for integer solutions
x and y, or show that no solution exists:

o 64r 4+ 336y =32: |x=—-10,y =2
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The Euclidean algorithm for the GCD terminates almost immedi-
ately with

336 =64 -5+ 16, and
64 =16-4+ 0.

So (336,64) = 16 | 32, and the equations have infinitely many
solutions. Working backwards from the first line,

16 =336-1+64-(=5).
Doubling throughout,
32=336-2+64-(—10),

so x = —10 and y = 2 solves this equation.

11z 4 121y = 21: ’No solutions.‘

Here, 121 = 112, so (121,11) = 11. Because 11 { 21, there are no
solutions.

13z + 11y = 7: [x = —35, y = 42|

Running through the Euclidean algorithm,
13=11-1+2,
11=2-5+1, and

2=1-2+40.

So (13,11) = 1| 7 and this equation has infinitely many solutions.
From the first two lines of the algorithm,

2=13-1+11-(-1), and
1=11-142-(=5).
Substituting up the chain,
1=11-14+2-(-5)
=11-1+(13-1+11-(-1))-(-H)
=11-1413-(=5) +11-5
=11-6+13-(-5).
So 13-(—5)+11-6 = 1. Multiplying by seven, 13-(—35)+11-42 =7,

so x = —35, y = 42 solves the original equation.
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