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Health care Finding outbreaks, population epidemiology
Social networks Advertising, searching, grouping
3 Intelligence Decisions at scale, regulating algorithms
- Systems biology Understanding interactions, drug design

Power grid Disruptions, conservation

Simulation Discrete events, cracking meshes

» Data analysis runs throughout.
» Many problems can be phrased through graphs.

—

» Any many are changing and dynamic.

o \
Report on Blackout Is Said To Describe Failure to ReactJ N“ . ‘i
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GT’s part of Intel’s Non-Numeric Computing Program

Goal

Supporting analysis of massive graphs under rapid change
across the spectrum of Intel-based platforms.

STING on Intel-based platforms

» Maintain a graph and metrics under large data changes

» Performance, documentation, distribution
» Available at http://www.cc.gatech.edu/stinger/
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Why Graphs?

» Smaller than raw data.

Attributed Relati(zrl?l Graph
P TS U » Taught (roughly) to all CS

7, f g students...

X \< *| » Semantic attributions can capture
i s , essential relationships.
: . » Traversals can be faster than
. T filtering DB joins.
# . e i . . .
7y N\ s tvesin » Provide clear phrasing for queries

about relationships.

Often next step after dense and sparse linear algebra.

» Note: Extracting data into a graph is a separate topic, see
Intel’s GraphBuilder.
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Graphs: A Fundamental Abstraction

Structure for “unstructured” data

» Traditional uses:

Bader,

» Route planning on fixed routes
» Logistic planning between sources, routes, destinations

Increasing uses:

Computer security: ldentify anomalies (e.g. spam, viruses,
hacks) as they occur, insider threats, control access,
localize malware

Data / intelligence integration: Find smaller, relevant
subsets of massive, “unstructured” data piles

Recommender systems (industry): Given activities,
automatically find other interesting data.
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On to STING...

STING
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STING'’s focus

Control

action prediction

summary

Simulation / query

Viz

» STING manages queries against changing graph data.
» Visualization and control often are application specific.
» Ideal: Maintain many persistent graph analysis kernels.

» One current graph snapshot, kernels keep smaller histories.
» Also (a harder goal), coordinate the kernels’ cooperation.
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STING: High-level architecture

Templated
JSON
Parser

Templated
csv
Parser

B Page
STINGER Rank
Server

Templated

Clust.
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Random

Shared Memory Mapped STINGER Data Structure

EC Results

SMM SMM
Results Results

@oepelUl dLIH

SMM
Results

Protocol Buffer Edge Batch over TCP

Edge
Generator

Key Stream Algorithm Monitor Shared
Process Process Process Memory

— Protocol Buffer via TCP. —> Shared Memory Reads

Data flows from left to right. Al stages aligned vertically execute on the data in
parallel. All processes i direct contact with shared memory have write access to
that memory. Execution is synchronized by the server. Streams, algorithms, and
monitors can join or leave the workflow at any time.
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Slide credit: Rob McColl and David Ediger

» OpenMP + sufficiently POSIX-ish
» Multiple processes for resilience

17 Jan. 2014
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STING Extensible Representation: Core data structure

edge type index

vertex
edge

index B =
source

Pl T LT T T
¥» / \ A

adj. vtx | weight |mod. time |first time |

Initial considerations [Bader, et al.]

P Be useful for the entire “large graph” community

P Portable semantics and high-level optimizations across multiple platforms & frameworks (XMT C, MTGL,
etc.)

P Permit good performance: No single structure is optimal for all.

A\

Assume globally addressable memory access and atomic operations

Support multiple, parallel readers and a single writer process
> Large graph = rare conflicts, may ignore synchronization
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STING in use

Who is using it?

» Internally, well, us. Some details later.
» Outside institutions in multiple research projects

» Center for Adaptive Supercomputing Software -
Multithreaded Architectures (CASS-MT) directed by PNNL

» PRODIGAL team for DARPA ADAMS (Anomaly Detection at
Multiple Scales) including GTRI, SAIC, Oregon State U., U.
Mass., and CMU

» Several industrial companies in the area of data analytics
and security

» Well-attended tutorials given at PPoPP, in MD, and locally
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STING: Where do you get it?

www.cc.gatech.edu/stinger/
Gateway to

» code,
development,
documentation,
presentations...

(working on usage and
development screencasts)

== ‘ Remember: Still academic code, but
maturing.

J
3@ Graph analytics to
<" the rescue!

v

What does it do? How can | use it? How can | help?

v

v

v
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Selected Program Accomplishments |

» In the beginning: Initial streaming algorithms

» Maintaining clustering coefficients[1] (counting triangles)

» Up to 130000 graph updates per second on X5570
(Nehalem-EP, 2.93GHz)
» 2000x speed-up over static recomputation

» Connected components[2]

» Up to 88700 graph updates per second on X5570, 233x
speed-up
» Community detection[3, 4, 5]

» First parallel algorithm for agglomerative community
detection, 3.3B edges clustered in 505s on a 4-socket,
10-core Westmere-EX.

> Win 10th DIMACS Implementation Challenge’s Mix Challenge

» Enabled moving computation from special server + batch to
laptops and servers.
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Selected Program Accomplishments Il

» Still maintained, used by external groups like Cray, people
finally threatening performance.
» Expanded streaming algorithms
» Improved connected components[6]

» Does not fall back on re-computation for deletions
» Up to 137x speed-up over static re-computation

» Community maintenance[7] and monitoring*

» Up to 100 million updates per second, speed-ups from 4x to
3700x

» Demonstrated at Research@Intel and GraphLab Workshop
2013

» PageRank*
» Reduce edge traversals from 30% - 90%.
» Betweenness centrality* [8, 9]
» Up to 148x speed-up
» Optimization and software structure of STING[10]
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Selected Program Accomplishments Il

» Up to 14x performance improvement on Intel-based
platforms[11], best paper award at HPEC12

» Research@lIntel 2013 demo collaborative with Intel
GraphBuilder: extract and transform data from a Hadoop
store, transfer to STING for analysis

» Something different:
» 10t DIMACS Implementation Challenge on Graph
Partitioning and Graph Clustering [12]
» Very useful workshop, 13-14 February 2012 at Georgia Tech
> Intel sponsorship: Thank you!
» Graph archive being used in other projects (although not
always cited appropriately)
» PASQUAL [13]
» First de novo genome assembler that is both scalable and
reliable (doesn’t crash).
» http://www.cc.gatech.edu/pasqual/ (not STING-based)
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Selected Details on Recent Work
Dynamic Community Updating
Incremental PageRank

Bader, Riedy— STING 17 )Jan. 2014 17 /47



Community Detection

What do we mean?

» Partition a graph’s
vertices into disjoint
communities.

Locally optimize some <
metric, e.g. modularity,
conductance, ...

Try to capture that
vertices are more
similar within one
community than
between communities.

Jason’s network via LinkedIn Labs

Bader, Riedy— STING 17 )Jan. 2014
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Parallel agglomerative method

Bader, Riedy— STING

Use a matching to avoid a serializing
queue.
Compute a heavy weight, large
matching.

» Simple greedy algorithm.

» Maximal matching, within 2x max

weight.

Merge all matched communities in
parallel.
Highly scalable, 5.8 x 106 — 7 x 10°
edges/sec, 8x — 16x speed-up on
80-thread E7-8870
Agnostic to weighting, matching...

» Works with many weighting and
termination criteria.

17 )Jan. 2014 19/ 47
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Parallel agglomerative method
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Community Monitoring Algorithm

Given a batch of edge insertions and removals:
1. Collect the set of possibly moved vertices AV.

» Add the endpoints* of every edge insertion and removal to
AV.
» (STING support routine, scatter/gather and atomic CAS.)

2. Extract each v € AV from its community into a singleton.
» This is the complex piece, see Riedy & Bader, MTAAP13 [7].

3. Re-start agglomeration from the expanded community
graph.

*: More recent experiments (by Anita Zakrzewska) add larger
neighborhoods. Little effect on modularity, large effect on performance.
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Platform: Intel® E7-4820-based server

Tolerates some latency by hyperthreading:

» “Westmere-EX:"” 2 threads / core, 8 cores / socket, four
sockets.

» Fast cores (2.0 GHz), fast memory (1066 MHz).

» Not so many outstanding memory requests (60/socket), but
large caches (18 MiB L3 per socket).

» Good system support
» Transparent hugepages reduces TLB costs.

» Fast, user-level locking. (HLE would be better...)
» OpenMP, although I didn’t tune it...

» Four processors (64
threads), 1 TiB memory

» gcc 4.7.2, Linux kernel 3.9
pre-release

> Acknowledgment: Donated by Oracle. Image: Intel® press kit
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Platform: Cray/YarcData XMT2

Tolerates latency by massive multithreading:
» Hardware: 128 threads per processor

» Context switch on every cycle (500 MHz)
» Many outstanding memory requests (180/proc)
» “No” caches...

» Flexibly supports dynamic load balancing
» Globally hashed address space, no data cache

» Support for fine-grained, word-level synchronization
» Full/empty bit on with every memory word

» 64 processor XMT2 at
CSCS, the Swiss National
Supercomputer Centre.

» 500 MHz processors, 8192
threads, 2 TiB of shared
memory Image: cray.com

Bader, Riedy— STING 17 Jan. 2014
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Test Data

» Combination of real and artificial

» Start with (small) real-world graphs from 10t DIMACS

Challenge collection:
Name V| |E| IC] |Ec|

caidaRouterLevel 192244 1218132 18343 30776
coPapersDBLP 540486 30866466 1401 205856
eu-2005 862664 16138468 55624 194971

» Generate artificial edge actions:

» Compute an initial clustering.

» Generate random edge insertions between and removals
within communities.

» 15/16: Insertions. Select communities « volume, vertices «
1/degree.

» 1/16: Removals. Uniform sampling (w/o replacement) of
existing edges, then inserted edges.
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Peak updates per second

» There is speed-up per # of threads, etc. on large batches,
large graphs. Not the interesting story.

Graph Platform #T Batch Upd/Sec Speed-up* Latency(s)

caidaRouterLevel IA32-64 56 1e5 1.2e+7 4.0 8.3e-3
XMT2 56 le6 2.5e+6 4.3 4.0e-1

coPapersDBLP IA32-64 20 leb 2.9e+6 11 3.5e-1
XMT2 48 3e5 2.2e+6 21 1.4e-1

eu-2005 IA32-64 40 1le5 4.8e+6 330 2.1e-2
XMT2 64 le6 2.1e+6 43 4.9e-1

Large batches, > 10° updates per second, but
= .
many threads ~ high latency

*: Speed up over static recomputation. Quality doesn’t
decrease significantly v. static recomputation.
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Least latency between updates

Graph Platform #T Batch Upd./Sec Speed-up* Latency (s)
caidaRouterLevel I1A32-64 2 1 4.6e+2 430 2.2e-3
XMT?2 4 30 5.2e+3 230 5.8e-3

coPapersDBLP IA32-64 4 30 7.0e+3 1900 4.3e-3
XMT2 40 1 l.4e+2 380 7.1e-3

eu-2005 IA32-64 12 1 4.2e+2 3500 2.4e-3
XMT2 20 10 1.5e+3 3200 6.5e-3

Small batches,
fewer threads

fast response, but < 104

updates per second

*: Speed up over static recomputation. Quality doesn’t
decrease significantly v. static recomputation.

Bader, Riedy— STING
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Incremental PageRank

| 4

PageRank: Well-understood method for ranking vertices
based on random walks (related to minimizing
conductance).

Equivalent problem, solve (I— aA"D~1)x = (1 — a)v given
initial weights v.
Goal: Use for seed set expansion, sparse v.

State-of-the-art for updating x when the graph represented
by A changes? Re-start iteration with the previous x.

Can do significantly better for low-latency needs.
Compute the change Ax instead of the entire new x.
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Incremental PageRank: Iteration

Iterative solver

Step k —» k+1:

Ax*HD) — a(A+ AA)T (D + AD)Y 1 ax®) ¢
a[(A+2A)(D+AD) 1 —ATD 1] x

» Additive part: Non-zero only at changes.
» Operator: Pushes changes outward.
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Incremental PageRank: Limiting Expansion

Iterative solver

Step k —» k+1:

AKKHD = oA+ DAY (D + AD) L ARE) + aARjheid

al(A+AA)T(D+AD) 1 —ATD ]k

» Additive part: Non-zero only at changes.
» Operator: Pushes sufficiently large changes outward.
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Incremental PageRank: Test Cases

v

Initial, high-level implementation via sparse matrices in Julia.

» Test graphs from the 10™ DIMACS Implementation Challenge.
» Add uniformly random edges... worst case.

v

Up to 100k in different batch sizes.

» One sequence of edge actions per graph shared across

experiments.

v

Conv. & hold base threshold: 10—12

Graph 14 |E| Avg. Deg. Size (MiB)
caidaRouterLevel 192244 609066 3.17 5.38
coPapersCiteseer 434102 16036720 36.94 124.01

coPapersDBLP 540486 15245729 28.21 118.38
great-britain.osm 7733822 8156517 1.05 91.73
PGPgiantcompo 10680 24316 2.28 0.23

power 4941 6594 1.33 0.07

Bader, Riedy— STING
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Incremental PageRank: Edge Traversal Savings

Percent of edge traversals relative to re-started iteration:
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Incremental PageRank: Quality

Kendall T (count of inversions) for ranking result:

fr) ) ©

e e T

oliiooueasd | wsoum b || dvacsisdnges

Ke
e A BN

o 250 5000 7500 1000 0 2500 s000 7500 10000 0 2500 000 500

N
Grapnname |+ caiak opapersCieseer| » copapersDBLP| + great_briain osm 8 PGRgianicompo * pomer

110%12 100000 — 100001000100

Larger is more similar, max. value one. All values here in (0.995, 1].
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Incremental PageRank: Quality for Seed-Set Use

Fagin, et al.’s extension Kendall T for the top 100 list:

f) )

o

Smaller is more similar, min. value one. All values here in [0, 0.0018).
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Related Projects (Future Plans)
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3 Uncertainty, and Locality
David A. Bader (PI), Jason Riedy (co-PI)

Under DARPA PERFECT (Power Efficiency Revolution for Embedded Computing Technologies) #HR0011-13-2-0001

Goal: Improve ops/watt by factor of 50x-75x!

» Providing mission-critical analysis of semantic data where
needed:
» as close to the data and data use as possible
» using the least power necessary to
» enable rapid decisions with reliable analysis.
» GRATEFUL is developing
» new algorithms providing new, fundamental capabilities
» while coping with real-world uncertainties
» under run-time power and environmental constraints.

» STING: Static = dynamic saves power, lowers latency.
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The XScala Project: A Community
__ Repository for Model-driven Design and
@ Tuning of Data- Intensive Applications for
Extreme-scale Accelerator-based Systems ™
David A. Bader (PI, GT), Viktor Prasanna (PI, USC),
Richard Vuduc (co-PI, GT), Jason Riedy (co-Pl, GT)

NSF ACI-1339745, an SI2-SSI project
Goal: Accelerate science!

» Map irregular data problems onto “accelerators” and make
them usable
» Science accelerators: multi-threaded, multi-core; GPGPU;
cloud; etc.

» Develop models and analysis kernels together.
» Not just graphs: also strings, machine learning, ...

» Not just GPUs: also parallelizing sequential roadblocks,
mapping onto FPGAs, finding opportunities for platforms, ...

™y y
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Graph Algorithm Primitives

Community standards effort underway: Timothy Mattson,
Jeremy Kepner, John Gilbert, Aydin Bulug, ...)

» State of the art for “Graphs in the
language of Linear algebra” is mature
enough to support a standard set of

= BLAS.

R el » Benefits of this standard include:

[ » Separation of concerns spares graph
algorithm experts the pain of producing
optimized primitives (the vendors will
produce these ... just as with traditional
BLAS)

» Prevents mass scale “reinvention of the
wheel” with each graph research group
creating their own primitives.
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Higher-Level (aka Fuzzier) Plans
|

» More integration into entire analysis tool chains.
» Continue partnering with ETL researchers (e.g.
GraphBuilder), visualization researchers, area experts.
» Keep STING focused on the graph mapping and algorithms
portion.

» Learn how/what to forget. Cannot keep all data.
» Make writing high-performance STING kernels easier:
» Looking into Julia (julialang.org) for dynamically compiled
kernels, although large memory footprint.
» Keeping an eye on other projects (many related through
GRATEFUL, e.g. SEJITS in UCB’s ASPIRE)
» PGAS for distributed memory platforms.

» Wants a finer-grained interconnect with higher injection
rates than Ethernet or IB...
» And a PGAS mmap... (aka system-level work)
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Artifacts of the Intel Non-Numeric Computing Program
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Software & Data

Where & What

STING/STINGER http://www.cc.gatech.edu/stinger/; framework
for dynamic graph analysis.

community-el http://www.cc.gatech.edu/~jriedy/
community-detection/ or
http://gitorious.org/community-el; separate static
community detection code, simple input, no external
dependencies.

PASQUAL http://www.cc.gatech.edu/pasqual/;

shared-memory scalable and dependable de novo
assembler

DIMACS Challenge http://www.cc.gatech.edu/dimacs10/; data,
workshop papers and presentations

All software under a modified BSD license.
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Publications |

Note: Not including presentations, posters, or publications that
simply used mirasol...

[1] D. Ediger, K. Jiang, E. J. Riedy, and D. A. Bader, “Massive
streaming data analytics: A case study with clustering
coefficients,” in Proc. Workshop on Multithreaded
Architectures and Applications (MTAAP), Atlanta, Georgia,
Apr. 2010.

[2] D. Ediger, E. ). Riedy, D. A. Bader, and H. Meyerhenke,
“Tracking structure of streaming social networks,” in Proc.
Workshop on Multithreaded Architectures and Applications
(MTAAP), Anchorage, Alaska, May 2011.
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Publications Il

[3] E. ). Riedy, H. Meyerhenke, D. Ediger, and D. A. Bader,
“Parallel community detection for massive graphs,” in
Proceedings of the 9th International Conference on Parallel
Processing and Applied Mathematics, Torun, Poland, Sep.
2011.

[4] —, “Parallel community detection for massive graphs,” in
10th DIMACS Implementation Challenge Workshop - Graph
Partitioning and Graph Clustering. Atlanta, Georgia:
(workshop paper), Feb. 2012, won first place in the Mix
Challenge and Mix Pareto Challenge.

[5] E. ). Riedy, D. A. Bader, and H. Meyerhenke, “Scalable
multi-threaded community detection in social networks,” in
Workshop on Multithreaded Architectures and Applications
(MTAAP), Shanghai, China, May 2012.
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(6]

[7]

(8]

R. McCaoll, O. Green, and D. Bader, “A new parallel algorithm
for connected components in dynamic graphs,” in The 20th
Annual IEEE International Conference on High Performance
Computing (HiPC), Hyderabad, India, Dec. 2013.

E. ). Riedy and D. A. Bader, “Scalable multi-threaded
community detection in social networks,” in 7th Workshop
on Multithreaded Architectures and Applications (MTAAP),
Boston, MA, May 2013.

O. Green, R. McColl, , and D. Bader, “A fast algorithm for
streaming betweenness centrality,” in 4th ASE/IEEE
International Conference on Social Computing (SocialCom),
Amsterdam, The Netherlands, Sep. 2012.
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Publications IV

[9] O. Green and D. A. Bader, “A fast algorithm for streaming
betweenness centrality,” in 5th ASE/IEEE International
Conference on Social Computing (SocialCom), Washington,
DC, Sep. 2013.

[10] J. Riedy, H. Meyerhenke, D. A. Bader, D. Ediger, and T. G.
Mattson, “Analysis of streaming social networks and graphs
on multicore architectures,” in IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), Kyoto, Japan, Mar. 2012. [Online]. Available:
http://www.slideshare.net/jasonriedy/
icassp-2012-analysis-of-streaming-social-networks-and-grapt
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Publications V

[11] D. Ediger, R. McCaoll, J. Riedy, and D. A. Bader, “STINGER:
High performance data structure for streaming graphs,” in
The IEEE High Performance Extreme Computing
Conference (HPEC), Waltham, MA, Sep. 2012, best paper
award.

[12] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner,
Eds., Graph Partitioning and Graph Clustering. 10th
DIMACS Implementation Challenge Workshop, ser.
Contemporary Mathematics. Georgia Institute of
Technology, Atlanta, GA: American Mathematical Society
and Center for Discrete Mathematics and Theoretical
Computer Science, 2013, no. 588.
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Publications VI

[13] X. Liu, P. Pande, H. Meyerhenke, and D. A. Bader,
“PASQUAL.: Parallel techniques for next generation genome
sequence assembly,” IEEE Transactions on Parallel &
Distributed Systems, vol. 24, no. 5, pp. 977-986, 2013.

[14] J. Fairbanks, D. Ediger, R. McColl, D. Bader, and E. Gilbert,
“A statistical framework for analyzing streaming graphs,” in
IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining (ASONAM), Aug. 2013.
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People!

GT is an educational institution

» Related graduate students:
» David Ediger: graduated, Ph.D., at GTRI
» Rob McColl: nearing graduation, shared with GTRI
Oded Green: nearing graduation
James Fairbanks
Anita Zakrzewska
Xing Liu: PASQUAL
Pushkar Pande: PASQUAL, graduated, MS
» Related post-doc:
» Henning Meyerhenke: Juniorprof. Dr. at Karlsruhe Inst. Tech.
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