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Outline

• Background on applications in social 
network analysis
– Static applications
– Growing need for dynamic analysis

• Quick, high-level description of two 
algorithm areas with potential for 
acceleration.
– k-Betweenness Centrality
– Agglomerative clustering / community 

identification



Image Source: Nexus (Facebook application)

Graph –theoretic problems in social networks

– Community identification: 
clustering

– Targeted advertising: centrality
– Information spreading: modeling
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Driving Forces in Social Network Analysis

• Facebook    has more than 500 million active users

• Note the graph is changing as well as growing.
• Traditional graph partitioning often fails:

– Topology: Interaction graph is low-diameter, and has no good separators
– Irregularity: Communities are not uniform in size
– Overlap: individuals are members of one or more communities

• Currently recompute ad targeting once per hour. Accelerate?

– Now consider targeting usage on a power grid, etc.

– Similar size, but static. Dynamic identification of issues 
definitely needs accelerated.
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3 orders of 
magnitude 
growth in 3 
years!



• CDC / Nation-scale 
surveillance of public health

• Cancer genomics and drug 
design
– computed Betweenness 

Centrality of Human Proteome

Massive Data Analytics in Health/EMS

Public Health
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Rank H1N1 atlflood

1 @CDCFlu @ajc

2 @addthis @driveafastercar

3 @Official_PAX @ATLCheap

4 @FluGov @TWCi

5 @nytimes @HelloNorthGA

6 @tweetmeme @11AliveNews

7 @mercola @WSB_TV

8 @CNN @shaunking

●Identify locally 
important news and 
information sources.

●Spread correct 
information.
●Prevent 
misinformation.

●Similar uses: Identify 
regions being 
affected by disaster / 
disease.(Collaboration w/PNNL)



Social/Economic Policy
• NYSE “Flash crash” of 6 May 2010:

– Dropped 700 pts in 20 minutes.
– Simple “circuit breakers” were of no use.

• "A number of the [regulatory pauses] in effect on 
May 6 were resolved in less than one second, […]" 
– Congressional Testimony of Larry Leibowitz, CEO 
NYSE Euronext

– Breakers based on levels, not structure.

• 1 Oct: Finally announce the reason:
– One single large trade triggered a network 

of reactions.

• Regulators need accelerated analysis.



Current Example Data Rates
• Financial / regulatory:

– NYSE processes 1.5TB daily, maintains 8PB
• Social: 

– Facebook adds >100k users, 55M “status” updates, 
80M photos daily; report more than 500M active 
users with an average of 130 “friend” connections 
each.

– Foursquare, a new service, reports 1.2M location 
check-ins per week

• Scientific:
– MEDLINE adds from 1 to 140 publications a day

Shared features: All data is rich, irregularly connected 
to other data. All is a mix of “good” and “bad” data...  
And much real data may be missing or inconsistent.
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Current Unserved Applications

• Separate the “good” from the “bad”
– Spam. Frauds. Irregularities.
– Pick news from world-wide events tailored to 

interests as the events & interests change.
• Identify and track changes

– Disease outbreaks. Social trends. Utility & service 
changes during weather events.

• Discover new relationships
– Similarities in scientific publications.

• Predict upcoming events
– Present advertisements before a user searches.

Shared features: Relationships are abstract. Physical 
locality is only one aspect, unlike physical simulation.
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Streaming Data Analysis
• Massive, irregularly structured
 input data.
• New simulation, analysis methods
• Widely varied, unexplored
 response / control methods

?

?
Current needs, future 
knowledge:
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Streaming Data Analysis
• Massive, irregularly structured
 input data.
• New simulation, analysis methods
• Widely varied, unexplored
 response / control methods

?

?
Current needs, future 
knowledge:
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Analysts need us here. Yesterday.
Closing the loop needs acceleration....



Streaming Data Analysis
• Massive, irregularly structured
 input data.
• New simulation, analysis methods
• Widely varied, unexplored
 response / control methods?

Current needs, future 
knowledge:
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...

Facebook 
friendship 
graph: 30k 
edges per pixel 
on 1600x1200 
screen!



Algorithms

• Just to set the stage for discussing 
accelerators:
– k-Betweenness Centrality

• (showing effectiveness on one alternative 
architecture, the Cray XMT)

– Agglomerative community identification
• (could be very useful to assist “acceleration” 

by data filtering)



K-Betweenness Centrality
• Count short paths (shortest + 

k) relative to all paths.
• Maintain multiple BFS fronts 

(single: Dijkstra's algorithm).
• Each vertex has a forward, 

lock-free queue of relevant 
edges.

• Distances and BC
k
 values can 

be computed by a second pass 
along queued edges.

• Not directly expressible (by our 
attempts) in linear algebra or 
mathematical optimization.

• Cost exponential in k, O(mn) 
for fixed k. Can be approx.
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Brandes, 2001; Bader, et al. 2009 & 2009.



IMDB Movie Actor Network (Approx BC
0
)
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An undirected graph of 1.54 million vertices (movie actors) and 78 million 
edges. An edge corresponds to a link between two actors if they have acted 
together in a movie. 

Kevin 
Bacon
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Disparity grows with k...
So what is the XMT?



• Tolerates latency by extreme multithreading
– Each processor supports 128 hardware threads
– Context switch in a single tick
– No cache or local memory
– Context switch on memory request
– Multiple outstanding loads

• Remote memory requests do not stall processors
– Other streams work while the request 
     gets fulfilled

• Light-weight, word-level synchronization
– Minimizes access conflicts

• Hashed global shared memory
– 64-byte granularity, minimizes hotspots 

• High-productivity graph analysis!

Alternative architecture: Cray XMT
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• Implicit communities in large-
scale networks are of interest in 
many cases.
– WWW
– Social networks
– Biological networks

• Formulated as a graph 
clustering problem.
– Informally, identify/extract “dense” 

sub-graphs.
• Several different objective 

functions exist.
– Metrics based on intra-cluster vs. inter-

cluster edges, community sizes, 
number of communities, overlap … 

• Agglomerative, bottom-up:
– Evaluate metric change, merge 

(independent) sets to maximize 
change.

Community Identification
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Seed Set Expansion

• Useful to find communities to which 
several vertices belong.

• Blue vertices are
are seeds, red vertices
belong to a community
of interest.

• Selection for viz,
analysis... 

• Consider agglomerative.
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Possible accelerators

• Map-Reduce: A large 
aggregate disk capacity 
with data replication 
support (Hadoop File 
System)....

• Netezza Twin-Fin: FPGAs
to filter/reduce data...
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Source: Netezza

● Currently experimenting with 
agglomerative methods on 
multithreaded architectures.
● Can we express clustering / 
community detection as a 
selection rule instead?
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Extra information on sizes / rates



Data Volumes in Commercial Sector

• EBay (April 2009) has a pair of data warehouses
– >2 PB, traditional

– 6.5PB, 17 trillion records, 1.5B records/day, each web click is 50-150 details
– Source: http://www.dbms2.com/2009/04/30/ebays-two-enormous-data-warehouses/ 

• Facebook (May 2009):
– Estimate of 2.5PB of user data

– 15 TB of new data per day

– Queries to develop targeted ads are run hourly
– Source: http://www.dbms2.com/2009/05/11/facebook-hadoop-and-hive/

•  In 2008: http://www.dbms2.com/2008/10/15/teradatas-petabyte-power-players/ 

– Walmart: 2.5PB

– Bank of America: 1.5PB

– Dell: 1PB
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Data Volumes: Current data sets
• NYSE: 1.5TB daily, 8PB maintained
• Google: “Several dozen” 1PB sets (CACM Jan 2010)

• LHC: 15PB per year (avg 41TB/day)
• (http://public.web.cern.ch/public/en/lhc/Computing-en.html)

• LSST: 13TB nightly
• (http://www.lsst.org/Project/docs/data-challenge.pdf)

• Wal-Mart: 536TB, 1B entries daily (2006)
• Facebook: 350M users, 3.5B shared items/week

 All data is rich.
 Data rates do not include 

building relationships.
22David A. Bader



Data Volumes: Current data rates

• NYSE: 1.5TB daily

• LHC: 41TB daily

• LSST: 13TB daily

 Current data is at the 
limit of current systems.

 Not counting 
relationships... 

• 1 Gb Ethernet: 8.7TB daily at 
100%, 5-6TB daily realistic

• Multi-TB storage on 10GE: 
300TB daily read, 90TB daily 
write

23David A. Bader



Data Volumes: Future data rates

• Facebook: >2x yearly

• Twitter: >10x yearly

• Growing sources:
– Bioinformatics

– Nano-scale devices

– Security

 Data rate growth is 
outstripping technology.

 Then consider: latency, 
ingest, processing, 
response...

• Ethernet: 4x in next 2 years. 
Maybe.

• Flash storage, direct: 10x 
write, 4x read. Huge cost for 
multi-PB storage.
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Data Volumes: Current data sets

• NYSE: 8PB
• Google: >12PB
• LHC: >15PB

 Even with parallelism, 
current (in-progress) 
systems cannot handle 
more than a few passes... 
per day.

• CPU ↔ Memory:
– QPI,HT: 2PB/day@100%
– Power7: 8.7PB/day

• Mem:
– NCSA Blue Waters target: 

2PB

25David A. Bader
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