

Applications in Social Networks Jason Riedy, David Bader, David Ediger, ...

Outline

- Background on applications in social network analysis
 - Static applications
 - Growing need for dynamic analysis
- Quick, high-level description of two algorithm areas with potential for acceleration.
 - k-Betweenness Centrality
 - Agglomerative clustering / community identification

dia

College of Computing

Graph -theoretic problems in social networks

Driving Forces in Social Network Analysis

- Note the graph is **changing** as well as growing.
- Traditional graph partitioning often fails:
 - **Topology**: Interaction graph is low-diameter, and has no good separators
 - Irregularity: Communities are not uniform in size
 - Overlap: individuals are members of one or more communities
- Currently recompute ad targeting once per hour. Accelerate?
 - Now consider targeting usage on a power grid, etc.
 - Similar size, but static. Dynamic identification of issues definitely needs accelerated.

Massive Data Analytics in Health/EMS			
 CE su Ca de 	Public Heal DC / Nation-scale rveillance of public ancer genomics a esign computed Betwee Centrality of Hum	th lic health nd drug enness an Proteome	Kelch- like protein 8 implicat ed in breast cancer
Rank	H1N1	atlflood	 Identify locally
1	@CDCFlu	@ajc	important news and
2	@addthis	@driveafastercar	information sources.
3	<pre>@Official_PAX</pre>	@ATLCheap	•Spread correct
4	@FluGov	@TWCi	Prevent
5	@nytimes	@HelloNorthGA	misinformation
6	@tweetmeme	@11AliveNews	•Similar uses: Identify
7	@mercola	@WSB_TV	regions being
8	@CNN	@shaunking	affected by disaster /
	(Collaboratio	on w/PNNL)	disease. Georgia College of Tech Computing 5

Social/Economic Policy

- NYSE "Flash crash" of 6 May 2010:
 - Dropped 700 pts in 20 minutes.
 - Simple "circuit breakers" were of no use.
 - "A number of the [regulatory pauses] in effect on May 6 were resolved in less than one second, [...]"
 Congressional Testimony of Larry Leibowitz, CEO NYSE Euronext
 - Breakers based on levels, not structure.
- 1 Oct: Finally announce the reason:
 - One single large trade triggered a network of reactions.

Georgia

College of Computing

• Regulators need accelerated analysis.

Current Example Data Rates

- Financial / regulatory:
 - NYSE processes 1.5TB daily, maintains 8PB
- Social:
 - Facebook adds >100k users, 55M "status" updates, 80M photos daily; report more than 500M active users with an average of 130 "friend" connections each.
 - Foursquare, a *new* service, reports 1.2M location check-ins per week
- Scientific:
 - MEDLINE adds from 1 to 140 publications a day
 - **Shared features:** All data is rich, irregularly connected to other data. All is a mix of "good" and "bad" data... And much real data may be missing or inconsistent.

Current Unserved Applications

- Separate the "good" from the "bad"
 - Spam. Frauds. Irregularities.
 - Pick news from world-wide events tailored to interests as the events & interests change.
- Identify and track changes
 - Disease outbreaks. Social trends. Utility & service changes during weather events.
- Discover new relationships
 - Similarities in scientific publications.
- Predict upcoming events
 - Present advertisements *before* a user searches.

Shared features: Relationships are abstract. Physical locality is only one aspect, unlike physical simulation.

Streaming Data Analysis

Streaming Data Analysis

Streaming Data Analysis

College of Computing

Algorithms

- Just to set the stage for discussing accelerators:
 - k-Betweenness Centrality
 - (showing effectiveness on one alternative architecture, the Cray XMT)
 - Agglomerative community identification
 - (could be very useful to assist "acceleration" by data filtering)

SFS forward edge

Tech

Backward edge

S

FSIEVEliti

a

е

Computing

b

K-Betweenness Centrality

- Count short paths (shortest + k) relative to all paths.
- Maintain multiple BFS fronts (single: Dijkstra's algorithm).
- Each vertex has a forward, lock-free queue of relevant edges.
- Distances and BC_k values can be computed by a second pass along queued edges.
- Not directly expressible (by our attempts) in linear algebra or mathematical optimization.
- Cost exponential in k, O(mn) for fixed k. Can be approx.

Brandes, 2001; Bader, et al. 2009 & 2009. Georgia g

IMDB Movie Actor Network (Approx BC₀)

An undirected graph of 1.54 million vertices (movie actors) and 78 million edges. An edge corresponds to a link between two actors if they have acted together in a movie.

Alternative architecture: Cray XMT

- Tolerates latency by extreme multithreading
 - Each processor supports 128 hardware threads
 - Context switch in a single tick
 - No cache or local memory
 - Context switch on memory request
 - Multiple outstanding loads
- Remote memory requests do not stall processors
 - Other streams work while the request gets fulfilled
- Light-weight, word-level synchronization
 - Minimizes access conflicts
- Hashed global shared memory
 - 64-byte granularity, minimizes hotspots
- High-productivity graph analysis!

College of Computing

Community Identification

- Implicit communities in largescale networks are of interest in many cases.
 - WWW
 - Social networks
 - Biological networks
- Formulated as a graph clustering problem.
 - Informally, identify/extract "dense" sub-graphs.
- Several different objective functions exist.
 - Metrics based on intra-cluster vs. intercluster edges, community sizes, number of communities, overlap ...
- Agglomerative, bottom-up:
 - Evaluate metric change, merge (independent) sets to maximize change.

College of Computing

Seed Set Expansion

- Useful to find communities to which several vertices belong.
- Blue vertices are are seeds, red vertices belong to a community of interest.
- Selection for viz, analysis...
- Consider agglomerative.

Possible accelerators

- Map-Reduce: A large aggregate disk capacity with data replication support (Hadoop File System)....
- Netezza Twin-Fin: FPGAs to filter/reduce data...

Currently experimenting with agglomerative methods on multithreaded architectures.
Can we express clustering / community detection as a selection rule instead?

Georgia College of Tech Computing

Acknowledgment of Support

Extra information on sizes / rates

College of Computing

Data Volumes in Commercial Sector

- **EBay** (April 2009) has a pair of data warehouses
 - >2 PB, traditional
 - **6.5PB,** 17 trillion records, 1.5B records/day, each web click is 50-150 details
 - Source: http://www.dbms2.com/2009/04/30/ebays-two-enormous-data-warehouses/
- Facebook (May 2009):
 - Estimate of **2.5PB** of user data
 - 15 TB of new data per day
 - Queries to develop targeted ads are run hourly
 - Source: http://www.dbms2.com/2009/05/11/facebook-hadoop-and-hive/
- In 2008: http://www.dbms2.com/2008/10/15/teradatas-petabyte-power-players/
 - Walmart: 2.5PB
 - Bank of America: 1.5PB
 - Dell: 1PB

Fech

Data Volumes: Current data sets

- NYSE: 1.5TB daily, 8PB maintained
- Google: "Several dozen" 1PB sets (CACM Jan 2010)
- LHC: 15PB per year (avg 41TB/day)
 - (<u>http://public.web.cern.ch/public/en/lhc/Computing-en.html</u>)
- LSST: 13TB nightly
 - (<u>http://www.lsst.org/Project/docs/data-challenge.pdf</u>)
- Wal-Mart: 536TB, 1B entries daily (2006)
- Facebook: 350M users, 3.5B shared items/week

- → All data is rich.
- Data rates do not include building relationships.

Data Volumes: Current data rates

- NYSE: 1.5TB daily
- LHC: 41TB daily
- LSST: 13TB daily

- 1 Gb Ethernet: 8.7TB daily at 100%, 5-6TB daily realistic
- Multi-TB storage on 10GE: 300TB daily read, 90TB daily write

 Current data is at the limit of current systems.

Georgia

 Not counting relationships...

College of

Computing

Data Volumes: Future data rates

- Facebook: >2x yearly
- Twitter: >10x yearly
- Growing sources:
 - Bioinformatics
 - Nano-scale devices
 - Security

- Ethernet: 4x in next 2 years. Maybe.
- Flash storage, direct: 10x write, 4x read. Huge cost for multi-PB storage.

> Data rate growth is outstripping technology.

 Then consider: latency, ingest, processing, response...

Georgia

Data Volumes: Current data sets

- NYSE: 8PB
- Google: >12PB
- LHC: >15PB

- CPU ↔ Memory:
 - QPI,HT: 2PB/day@100%
 - Power7: 8.7PB/day
- Mem:
 - NCSA Blue Waters target: 2PB

Computing

 Even with parallelism, current (in-progress) systems cannot handle more than a few passes... per day.