
Power and Control in Networked Sensors

E. Jason Riedy
ejr@cs.berkeley.edu

Robert Szewczyk
szewczyk@cs.berkeley.edu

11 May, 2000

Abstract

The fundamental constraint on a networked sensor is
its energy consumption, since it may be either im-
possible or not feasible to replace its energy source.
We analyze the power dissipation implications of im-
plementing the network sensor with either a central
processor switching between i/o devices or a fam-
ily of processors, each dedicated to a single device.
We present the energy measurements of the current
generations of networked sensors, and develop an ab-
stract description of tradeoffs between both designs.

1 Introduction

Over the last few decades, “Moore’s Law” enabled
the hardware engineers to put a substantial amount
of computation and storage into increasingly smaller
packages. Additionally, advances in CMOS process-
ing and MEMS research make it possible to construct
a low-cost networked sensor. In the near future, re-
searchers predict that it will be possible to integrate
communication, power sources, sensors and actuators
with computational elements in a mm3 [11].

Energy stored within each networked sensor is the
most precious resource, so both the hardware archi-
tecture and the software system should be optimized
for its usage. Each sensor has a limited energy source,
and replenishing this energy source may be either im-
possible (no physical access to the device) or not eco-
nomically viable (the maintenance cost can exceed
the sensor cost by orders of magnitude). Thus the en-
ergy efficiency is probably the most important metric
against which the architectural choices must be eval-
uated.

A typical desktop PC contains many different pro-
cessing elements: besides the CPU, there are many
dedicated i/o processors for handling graphics, net-
work traffic, or hard disk requests. These dedicated

i/o processors were added in order to enhance the
performance of the system. In contrast, the current
generation of the networked sensor system looks more
like primitive home computer system from the late
’70s: there is a single processor handling all the i/o

devices. The architects of the networked sensor will
sooner or later face a design dilemma: should there
be a dedicated processing element for each i/o device
or should the management of the i/o devices be cen-
tralized? How should these decisions be evaluated?
What are the fundamental tradeoffs between these
design alternatives?

In this paper we compare and analyze two architec-
tures for networked sensors: one based around a sin-
gle CPU handling multiple i/o devices, and one based
around two general purpose processors: one handling
the wireless communication system, and one handling
other i/o devices.

In general the power dissipation within a system is
proportional to frequency. In a system with real-time
deadlines, assigning the tasks to dedicated processors
implies that the individual processors will be able to
run at a significantly lower frequency. Lowering the
frequency can lead to lowering the operating voltage
of the component. These two factors could yield sub-
stantial power savings. Furthermore, since the in-
dividual components might be tuned to meet their
deadlines just in time, they would not waste any en-
ergy in the idle states, whereas the scheduling of tasks
on a single processor might require that this processor
spends a portion of time idle.

These potential savings need to be balanced against
several factors: the communication between the pro-
cessors will almost certainly not be free, there typi-
cally is a fixed cost associated with having an extra
component. Allocating tasks to processors is quite
similar to a packing problem. Depending on the gran-
ularity of tasks and a particular split, multiple pro-
cessors allocated to the problem might have to run
at either higher or lower cumulative frequency than
a single processor allocated to the task.

1

In this paper, we examine the implications of both
the single and multiple processor architectures on
the power dissipation within the system. We ana-
lyze both design styles in terms of abstract models,
and compare these models with the measurements
of a real system: a prototype networked sensor [9]
running TinyOS [6]. The rest of this paper is orga-
nized as follows. Section 2 introduces simple models
of hardware and software of the networked sensor and
Section 3 presents a particular implementation of a
networked sensor used to ground our empirical study.
Section 4 analyzes the power consumption of a single
processor system: we present a set of detailed energy
measurements of the single processor design in Sec-
tions 4.1 and 4.2, and analyze this data in abstract
terms in Sections 4.3 and 4.4. Section 5 extends this
analysis to systems with multiple processors. In Sec-
tion 6 we describe the related work, and conclude in
Section 7.

2 Architecture Model

To draw sound general conclusion about the power
analysis in networked sensors we need to be able to
abstract the observations of our particular hardware
and software system. In this section we present the
models of both hardware and software.

2.1 Task Model

A light-weight networked sensor is not expected to
be a general purpose computing device. Its goals are
to collect readings, process them slightly, and com-
municate readings with other sensors. For example,
a node may take three temperature readings, average
them, and trade averages with its neighbors. These
goals can be subdivided into various tasks, and the
tasks recur periodically and often be subject to real-
time constraints. Figure 1 shows a slice of a sensor’s
activities over a time span T . For analysis, we as-
sume that this time span is completely periodic; the
same tasks are executed in the same number for each
slice of length T .

Over the time T , the processor executes instructions
to control the devices and process readings. Let K be
the number of clock cycles occupied by instructions
during T . At a particular execution frequency of f
cycles per second, let ρ be the utilization,

ρ =
K

fT
. (1)

T

Sensing (), communicating (), and processing
().

Figure 1: A networked sensor runs only a few classes of
tasks.

Note that K/T is a frequency itself, and at that fre-
quency the K cycles span the entire time T . This
frequency, fm, is the minimum frequency supporting
the given task set, and fρ = fm. Relating the fre-
quency and utilization will be useful for expressing
energy usage. When the processor is not busy, 1− ρ
of the time, it sits in a low-power idle or stop mode.

Scheduling general tasks to meet real-time con-
straints is a challenging topic in its own right, one we
leave to others [14, 3]. We assume that a scheduling
exists for any particular processor and device config-
uration. This is not entirely realistic, but it allows us
to focus on power consumption rather than real-time
scheduling.

2.2 Hardware Model

To examine the power consumption in a small, net-
worked sensor, we also need a simple model of the
hardware. Figure 2 shows the block structure of sen-
sor nodes with ‘dumb’ and ‘intelligent’ i/o devices.
The devices are assumed to have power needs that do
not vary as instructions are partitioned between pro-
cessors. This is reasonable if the devices’ activity is
managed entirely with respect to real time, as when
a temperature sensor is be run every half-second for
a tenth of a second. The energy consumed by oper-
ating the sensor does not depend on the number of
processors or partitioning of tasks, and so we do not
complicate our analysis with these constants. We also
assume that the switching frequency of the processor
pins connected to the devices is determined by the
devices and is also constant for a task set.

Now how much energy is needed for the processing?
The energy consumed is the power over the time pe-
riod, E =

∫ T
0
Pdt. For the dc processing compo-

nents, P = IV , where the current I is a function
of f . We assume that voltage and frequency vary
indepently, e.g. we remain away from fundamental
cmos limits. We hold the voltage V constant, so
E = V

∫ T
0
I(f)dt.

The task model, Section 2.1, separates the current

2

P

M

I/O I/O I/O

P P P

M

I/O I/O I/O

Figure 2: One central processor controls many ‘dumb’
devices, while each ‘intelligent’ device has a dedicated
processor.

into an active current for ρT and an idle current for
(1− ρ)T . This gives an energy consumption of

E = V T (ρIactive(f) + (1− ρ)Iidle(f))
= V T (Iidle(f) + ρ(Iactive(f)− Iidle(f)))
= V T (II(f) + ρIA(f)) (2)

over the recurrent period of length T . Here we’re de-
fined II as the idle current, and IA as the extra cur-
rent needed over II for executing instructions. With
IA = Iactive − Iidle, IA expresses the processor’s acti-
vation current.

In Equation 2, the voltage and time are held constant,
so the only quantity left to optimize is the drawn
current. For the processors of interest, I is a linear
function of f , and I∗(f) = a∗f + b∗, where ∗ is either
I or A for the idle and activation currents, respec-
tively. Later sections will investigate the current for
a given task set, looking for optimal parameters and
comparing different processor configurations. Note
that the derived power dissipations are for the power
lost through the processor, not necessarily the power
drawn from the battery. Others have examined that
problem[10], and minimizing the current also maxi-
mized the battery life in the proposed models.

3 Experimental Platform

Having introduced the abstract model, let’s exam-
ine how well they map onto the real system. Be-
low, we examine a simple application for a net-
worked sensor developed in [6]: the application mea-
sures environmental parameters periodically, broad-
casts these measurements over the low power RF link,
participates in routing protocols, and responds to
data queries. This high level specification was im-
plemented on a SmartDust prototype [9] using the
TinyOS framework [6]. In this section we briefly

present the hardware and software environments.

3.1 Hardware organization

Our sample networked sensor consists of a micro-
controller with internal flash program memory, data
SRAM and data EEPROM, connected to a set of
actuator and sensor devices, including LEDs, a low-
power radio transceiver, an analog photo-sensor, a
digital temperature sensor, a serial port, and a small
coprocessor unit. While not a breakthrough in its
own right, this prototype forces us to reason about
the various parts of the system.

The single most important component of the sys-
tem is the radio. It represents an asynchronous in-
put/output device with hard real time constraints. It
consists of an RF Monolithics 916.50 MHz transceiver
(TR1000) [12], antenna, and collection of discrete
components to configure the physical layer charac-
teristics such as signal strength and sensitivity. It
operates in an ON-OFF key mode at speeds up to
19.2 Kbps. Control signals configure the radio to op-
erate in either transmit, receive, or power-off mode.
The radio contains no buffering so each bit must be
serviced by the controller on time. Additionally, the
transmitted value is not latched by the radio, so jitter
at the radio input is propagated into the transmission
signal.

The processor is an Atmel AVR 90LS8535 [2] ex-
ternally clocked at 4MHz. It is an 8-bit Harvard
architecture with 8KB instruction and 512 bytes of
data memory. The processor integrates various kinds
of peripherals: a UART controller, an A/D con-
verter, several timers, and general i/o pins. Note-
worthy are the sleep modes supported by the pro-
cessor: idle shuts down just the processor, power
down which shuts off everything but the watchdog
and asynchronous interrupt logic necessary for wake
up, and power save, which is similar to the power
down mode, but leaves an asynchronous timer run-
ning. The latter two modes reduce the energy dis-
sipation by a factor of a 1000, but, unfortunately, it
takes miliseconds to restore the processor from the
deeper sleep modes. Also significant is the current
drawn by each of the sleep modes as a function of
processor frequency: in the idle mode, the current
is linearly dependent on frequency of the processor,
whereas in the latter two modes the current is in-
dependent from frequency. This distinction becomes
significant below, in Section 4.3.

The temperature sensor (Analog Devices AD7418)

3

represents a large class of digital sensors which have
internal A/D converters and interface over a standard
chip-to-chip protocol. In this case, the synchronous,
two-wire I2C [13] protocol is used with software on
the microcontroller synthesizing the I2C master over
general i/o pins.

The light sensor is a photoresistor with resistance
ranging from 10Ω to 50kΩ. It forms a voltage divider
with a fixed resistor, and an A/D converter inside the
microcontroller is used to read the light levels.

3.2 TinyOS

As a model of execution for the network sensor appli-
cation, we chose the TinyOS described in [6]. TinyOS
is a small operating system designed with several
goals in mind: providing support for highly concur-
rent applications, providing system modularity with
minimal overhead, and placing minimal requirements
on the underlying hardware, both in terms of the pro-
gram size and in terms of other computational re-
sources. The execution model provided by TinyOS is
similar to FSM models, but considearbly more pro-
grammable.

A complete TinyOS system consists of a simple sched-
uler, and a graph of components. Each component
has four interrelated parts:

1. an encapsulated fixed size frame. The use of
static memory allocation allows for checking the
memory requirements, and elimination of over-
head associated with dynamic memory alloca-
tion

2. a set of event handlers, which are typically in-
voked in response to hardware events. Typi-
cally the responsibility of the thread is to deposit
information within the frame, schedule threads
for more complex processing of data, and signal
higher-level events.

3. a set of commands, which are non-blocking
requests to lower level components. Com-
mands can schedule threads and call other com-
mands,but they may not signal events.

4. a bundle of simple threads, which are primar-
ily responsible for the computation within the
system. Threads run to completion, but they
can be preempted by event handlers. Run-to-
completion semantics allows for maintaining a
single stack, which is important in a memory

constrained system. Threads allow for simulat-
ing concurrency within each component, since
they execute asynchrounously with respect to
events. Threads should never spins or wait for
a condition, instead the scheduling mechanism
should be used.

The thread scheduler is currently a simple FIFO
scheduler, utilizing a bounded size scheduling data
structure. Depending on the requirements of the
application, more sophisticated priority-based or
deadline-based structures can be used. Within the
current TinyOS version, the scheduler puts the pro-
cessor into an idle mode.

Currently, the components available within TinyOS
can be divided into three groups. First, components
that are a thin abstraction over hardware; the UART
interface, a simple i/o pin or a timer fall into that
category. The components in the second group act as
a replacement for unavailable hardware, for example
the byte-level radio controller implements the func-
tionality similar to that of a UART on top of a bit
level radio component. Another component falling
into this category is the I2C, which implements that
protocol in software.

Finally, the third group consists of high level soft-
ware components. These components perform rout-
ing, control and data transformations. The active
message component serves as an example for this
group, since it provides dispatch and routing.

Each component describes both the resources it pro-
vides and the resources it requires. This makes it
quite easy to wire the components together, and en-
ables the use of higher level design tools. Communi-
cation between components takes the form of a func-
tion call, which provides compile-time type checking
and has low overhead.

3.3 Application implementation

The application running on the networked sensor
monitors the temperature and light conditions and
periodically broadcast their measurements onto the
radio network. Furthermore, each sensor is config-
ured with routing information that will guide packets
to a central base station. Thus, each sensor can act
as a router for packets traveling from sensors that are
out of range of the base station.

There are three i/o devices that this application must
service: the network, the light sensor, and the tem-
perature sensor. Of these, the network is the most

4

complex. As pointed out above, the RFM radio only
provides a bit level interface, which imposes strict real
time limits on the application. In order to provide
the communication, the radio input is sampled by
software at the rate of 10000 times per second. The
bits are decoded 1 and assembled into bytes. On a
higher level, the bytes are assembled into packets, and
dispatched depending on their type and destination.
All layers from sampling bit-level input to dispatch-
ing packets are performed in software. This function
maps very cleanly onto the abstract task model de-
scribed in Section 2.1: the amount of work is very
periodic, since we need to perform a fixed amount of
work per bit, a fixed amount of work per byte and so
on. The TinyOS events map quite well onto the pe-
riods of sensing, while the TinyOS threads map onto
computation blocks in the abstract model. The real-
time constraints are quite severe: the handler sending
and receiving bits does have enough time to receive
and store the bits, but it cannot perform the signal
decoding without missing a deadline. In order to cope
with this problem, the encoding and decoding of bits
are done within a thread rather than within the event
handler (see Section 4.4 for the power implications of
this constraint).

The temperature sensor uses the I2C protocol to com-
municate with the rest of the system. While this
protocol is perhaps more complex than the simple
encoding used by the radio, it has a flexible timing
model, which implies that the real-time deadlines will
be much more forgiving.

The light sensor is the simplest of the i/o devices:
currently it is connected to the A/D converter in free
run mode. Reading data involves simply reading an
appropriate register of the A/D converter.

Since the components of TinyOS are well isolated
from one another, it is an easy task to partition the
task between multiple processing units. Furthermore,
the asynchronous nature of the entire system ensures
that the natural partitioning along the component
boundaries is quite efficient.

4 One Processor

To start our study of power usage on a single pro-
cessor system, we present the measurements of the
experimental system. To gain an understanding of
the relative energies spent on accessing the sensors,

1The radio requires a DC balanced signal. Currently
TinyOS supports Manchester and 4B6B encodings.

and processing the incoming data, we developed a set
of microbenchmarks measuring various primitive op-
erations. As these benchmarks show, the processor
is in fact consuming a significant amount of energy
compared with the i/o devices, thus the question of
optimizing the processor usage is a valid one. We
then proceed to the measurements of the TinyOS ap-
plication: we analyze the overheads of the system and
extract the real-time tasks fitting within the model
presented in Section 2.1. We then proceed to abstract
analysis of the one processor problem.

4.1 Microbenchmarks

The processor on the mote is externally clocked at
4MHz, and connected to a 2.84V power supply. We
placed a 10 Ω resistor in series with the mote (placed
between ground and the device), and measured the
voltage drop across the resistor to arrive at the cur-
rent drawn by all modules on the device. The mea-
surements were made with the aid of an HP 16550A
logic analyzer / 16532A digital oscilloscope, which
was triggered by the benchmarks by one of the oth-
erwise unused pins on the processor. The oscilloscope
outputs a picture of voltage samples. This picture is
downloaded to a PC, the points converted to Amps
(as we know that the voltage drop is measured across
a 10 Ω resistor) and integrated between two triggers
points.

All of our benchmarks work by taking the difference
between an execution which includes either a known
number of the instruction of interest or a known oper-
ation on a module and an execution without it. They
all have the following form:

Turn_off_all_devices
Setup
While(1) {
Flash_Trigger_Pin
Body

}

For testing specific instructions (InstX), Setup is
blank while Body has the general form of:

For i=0 to N {
InstX
InstX
...
InstX

}

5

Instruction type Energy per Energy per
cycle (nJ) instr (nJ)

idle 1.70 1.70
noop 3.39 3.39
arithmetic/logic 3.41 3.41
memory read* 3.66 7.32
memory write* 3.75 7.50

Device Energy per Energy per
CPU cycle quantum

LED 1.89 1.89 nJ/cycle
Photo 0.08 - 0.28 0.08 - 0.28 nJ/cycle
ADC 0.36 - 0.30 4.62 - 3.95 nJ/conv.
RFM send 2.56 2050 nJ/bit
RFM receive 2.44 1950 nJ/bit

Table 1: Energy consumption of instructions (left)
and external modules (right). RFM send and receive
measurements were done assuming 100 µs pulses.

InstX is executed multiple times per iteration to
make it a more significant portion of the total com-
putation (since some cycles go to the loop overhead).
This is then compared with running the empty loop.

Although the benchmarks for the modules vary
slightly depending on the module, the light sensor
serves as a good example. This module requires 5
measurements:

1. Base: Setup is blank - nothing is turned on

2. Light Sensor without ADC in the dark: Setup
turns on the light sensor but not the ADC to
convert the output, and the sensor is covered

3. Light Sensor without ADC in full light: Same
as above except a bright light is shown on the
sensor

4. Light Sensor with ADC in the dark: Same as 2
but the ADC is activated to convert the analog
signal

5. Light Sensor with ADC in full light: Same as 3
but with the ADC

Since the light sensor is a photoresistor, the current
drawn depends on the light level. The last two mea-
surments are needed because the amount of current
drawn by the ADC is also effected by the light level
(see below). The body in each of these tests is a busy
loop of a fixed length. To compute the energy con-
sumed by each component, we take the difference of
the energy used when that component was active at
a certain light level and when it was not integrated
over the same period.

Table 1 summarizes our findings from running these
microbenchmarks. We found that arithmetic/logic
operations consumed about the same amount of en-
ergy as noops, while loads and stores were only
slightly more expensive per cycle. Note, however,
that loads and stores take two cycles. This was rather
surprising at first, since we expected that going to
memory would be much more expensive than access-
ing registers. However, a closer look at the design of
the ATMEL AVR architecture reveals that the reg-
ister file, the i/o registers and the data memory are
located in a single block of on-chip SRAM. The slight
overhead seems to be caused by the transfer of the
data words through the main data bus, rather than
through a dedicated bus used to read the register file.

Another surprise was that communication (either di-
rectly through a pin, or through a serial interface such
as the UART) did not consume any additional energy
(note that our measurement uncertainty is around
0.05nJ/cycle). This is significant for our analysis of
multiple processor architectures.

4.2 TinyOS measurements

In our previous work [6] we presented basic measure-
ments of the TinyOS system. The previous measure-
ments were taken using a logic analyzer. In the con-
text of this work, we enhanced ATMEL AVR simula-
tor [4] with a set of i/o devices, and used the instruc-
tion traces to analyze the performance of TinyOS
components. In general, we find an excellent agree-
ment between the data gathered in this experiment
and the data gathered before. Table 2 shows the costs
of some fundamental operations on the ATMEL AVR
architecture. While small in absolute terms, these
numbers can add up to a significant percentage of the
total execution time of an application. For example,
consider the data presented in Table 3. On average, it
takes 163 cycles to send a bit: 60 cycles are spent sav-
ing and restoring state and the control flows through
several modules (which implies not only posting of
several commands but also state transitions within
several distinct state machines). All this effort is re-
quired to set an output pin depending on a value
somewhere in memory, and to update some state vari-
ables, all of which tasks should never take more than
50 cycles. This disparity shows the importance of the
structuring of the application and the importance of
inter-component optimization. We discuss the im-
pact of these overheads below, in Section 4.4.

Based on these figures, it appears that TinyOS ac-
tively looking for a start symbol within incoming

6

Operation Cost (cycles)
Byte copy 8
Post an event 10
Post a command 10
Post a thread to scheduler 46
Context switch overhead 51
Interrupt (hardware overhead) 9
Interrupt (software overhead) 60

Table 2: Cost of the basic operations and overheads
within TinyOS. Note in particular the relatively high
cost of the software overhead within interrupt han-
dlers. This overhead is caused by saving the proces-
sor state; it becomes quite significant in many of the
handlers actually executed within TinyOS

Task Avg. Time Max. Time Period
(cycles) (cycles) (µs)

Start receive 130 144 50
Receive bit 191 315 100
Send bit 163 301 100
Byte encode 130 130 1600
Byte decode 146 146 1600

Table 3: Real-time tasks within TinyOS. Byte en-
code and decode are structured as TinyOS threads,
their timing does not include the time scheduling and
switching time. On the other hand, the other opera-
tions are events, which are executed within the con-
text of an interrupt. Their timing information does
include the software overhead of saving the state.

transmission pushes the limits of the hardware. If
TinyOS were purely event based, then the proces-
sor running at 4 mhz is used about 75% of the time.
However, the situation is a bit more complex, since
TinyOS supports tasks, and contains a scheduler. Ex-
ecution of an empty scheduler loop takes 40 cycles;
that number should be added to the average execu-
tion time in order to compute the average time spent
working. In this case, we can sleep only for 15% of
the time.

The large disparity between the maximum and av-
erage times of send and receive bit operations are
caused by the fact that when the bit-level processing
layer completes a byte, that triggers an event propa-
gation through many layers. Separating the network
stack between multiple processors helps to reduce the
disparity between the average and maximum times.

4.3 Simple Analysis of One Processor

In a real-time application on a single processor the
main parameter we can adjust is the frequency of the
processor. The frequency impacts several parameters
within the system: the time spent in active and idle
modes, and the amount of overhead inherent in a par-
ticular structure of the application. In the next two
sections we present the analysis of how frequency and
system overhead impact the power usage.

We begin with the current consumption of a single
processor running a fixed set of tasks. This simple
situation serves as base for later comparisons. The
task set will have a constant number of active cycles
K over time T , and fm is a constant. Expanding
the idle and activation current gives the total current
consumption as a function of the utilization ρ,

I = (aIf + bI) + ρ(aAf + bA)
= (aIfm/ρ+ bI) + ρ(aAfm/ρ+ bA)

= bI + aAfm + aIfmρ
−1 + bAρ. (3)

Of aI 6= 0, as in the Atmel’s idle mode, then the
current follows the solid curve in Figure 3. The curve
has a minimum at

ρ2
opt =

aI
bA
fm. (4)

Substituting this back into the current yields the op-
timum current for the task set, Iopt = bI + aAfm +
2
√
aIbAfm. Because ρ ∈ (0, 1], the optimum value

can only be achieved when

fm ≤
bA
aI
. (5)

7

ρ

I

ρ2
opt = aI

bA
fm

Figure 3: The total current follows the solid line when
the idle current depends on frequency (idle mode) and
the dashed line otherwise (stop mode).

When fm > bA/aI , the least current draw occurs with
the processor running as slowly as possible. In the ex-
treme case, ρ = 1, and Iopt = bI + bA + (aI + aA)fm.
Real-time constraints will force ρ < 1 in many cir-
cumstances.

However, if the processor is put into a stop mode
when inactive, one that draws a current invariant
with the active frequency, then aI = 0. The current
follows the dashed line in Figure 3. The minimum
would be at ρopt = 0 and Iopt = bI + aAfm. Zero
utilization requires an infinite frequency and is not
achievable. The least current draw here occurs when
running the processor as fast as possible. Frequency
becomes free, although it will be limited by the op-
erational voltage at the very least.

To make this analysis more concrete, Table 4 shows
the optimal utilization and the expected energy usage
for our experimental sensor. The table presents the
data ignoring some scheduling contstaints: in partic-
ular, since maximum execution time is larger than
the average, running at the optimal frequency might
cause us to miss deadlines. Restructuring the ap-
plication across multiple processors might help with
this disparity by allowing each of the processors to
run closer to the optimal frequency while still meet-
ing deadlines.

4.4 One Processor with Overhead

The previous analysis ignored the costs of context
switching and scheduling. Each event swaps proces-

Optimal Optimal Energy
Utilization Frequency Usage

(%) (mhz) (mJ)

Base TinyOS 90.6 2.22 0.42
cheap interrupts 76.5 1.87 0.34
cheap scheduling 67.6 1.65 0.30

Table 4: Optimal utilization and energy usage for
sending data within TinyOS with varying overhead
structures.

Sensing (), communicating (), processing (),
and overhead ().

Figure 4: Events incurr some overhead processing for
every context switch.

sor state into memory on entry and out of memory
on exit. The time and instruction overhead can be
modeled by splitting the required cycles into work
and overhead cycles, K = Kw + Ko. The processor
utilization then splits into ρ = ρw + ρo. Some of the
work cycles may be considered as ‘overhead’ from dif-
ferent viewpoints, but we strictly limit the definition
of overhead to those cycles that are an artifact of a
particular execution environment. To us, the cycles
spent saving registers to memory during a context
switch are overhead, but instructions that update a
loop variable in some processing thread are not.

The current consumption with overhead is modeled
by

I = II + IA(ρw + ρo). (6)

Some overhead is avoidable. Imagine running the
processor in Figure 4 just a little faster, fast enough
that the processing after the last sample could com-
plete before the next sample. Then all events could
avoid context switches. Limit Ko to only the cycles
spent swapping processor state. An increased fre-
quency cf , c > 1, can trade the overhead instructions
for some extra idle time at the higher frequency.

If it is possible, when is it beneficial? Let

I ′(cf) = II(cf) + IA(cf)ρw, (7)

eliminating all of the overhead at cf . Then the ques-
tion can be rephrased as finding the conditions when

I ′(cf) < I(f). (8)

Intuitively, this should occur when the extra current
needed for higher-frequency work is less than the cur-

8

rent needed for the overhead. Indeed, when we ex-
pand Equation 8, we find that the condition becomes

(c− 1)(aI + aAρw)f < IA(f)ρo. (9)

The right side, IA(f)ρo, is the overhead current, and
the left, (c−1)(aI+aAρw)f , is the extra work current
at the higher frequency. So when the condition in
Equation 9 is satisfied, running at a higher frequency
cf can decrease power consumption by IA(f)ρo−(c−
1)(aI + aAρw)f .

5 Multiple Processors

The decision to use multiple processors is normally
driven by the need to meet real-time scheduling con-
straints at a lower processing frequency. How does it
affect the power consumption?

5.1 Multiple processor experiment

To experiment with a multiple processor design we
decided to simulate to simulate the processors on a
simulator. Rather than looking at the dynamic in-
teraction between the dedicated processors, we ana-
lyzed the traces generated by a single processor run-
ning augmented pieces of TinyOS application. When
faced with a multiple processor problem, the designer
must ask fundamental questions: How is the applica-
tion partitioned? What are the interprocessor com-
munication costs? The design we experimented with
is only a single point, the more general implications
of multiprocessor designs are explored in the Sections
below.

In order to partition the TinyOS application we have
developed a light-weight RPC-like component. At
the moment it is only capable of transmitting scalar
parameters. In our experiments, this limited capa-
bility still allowed for a substantantial freedom in
choosing the partitioning of components. Our mea-
surements from Section 4.1 show that the communi-
cation between two processor over an external bus is
essentially free in hardware sense (at least at low data
rates). Similarly, our measurements of memory oper-
ations on the ATMEL show that accessing memory
(and by extension, communication through shared
memory) show that accessing memory is not sig-
nificantly different from just executing instructions.
However, the communication does impose some soft-
ware overhead. If the processors are communicating
through some shared bus (UART, SPI, or just some-
thing as simple as parallel communication through

the i/o ports), the overhead is equal to the cost of
an interrupt (in our application, this was measured
to be 130 cycles). In the multiprocesor design we
modeled, the communication between the processors
takes place over a UART, and costs one interrupt per
byte, or 130 cycles per byte.

An analysis of the application running on a single
processor revealed that 95% of the time is spent han-
dling network events. The logical place to split the
processing is somewhere within the network stack.
Within the network stack itself most of the processor
time is spent within the bit-level component (60%
- handling the hardware interrupt, checking the in-
ternal state, reading and wrinting pins) and within
managing the logic of byte-level transfers (30% - en-
coding and decoding of the raw bits, and controlling
the lower level component). While it may seem at-
tractive to split off the bit-level processing, since it
consumes roughly half of the CPU time, it turns out
to be a bad idea. Bit level interfaces are quite expen-
sive to handle on traditional CPUs: the granularity of
operations is quite mismatched between the incoming
signal and the instructions operating on that signal.
With our communication model, such split does not
enable us to lower the frequency of any processors;
in fact, since sending bytes over the UART is more
expensive (in instructions that need to be executed)
than a procedure call, we need to raise the frequency
in order to meet the deadlines. It is marginally benefi-
cial to to split off the combination of the bit-level and
byte level radio interface. This a somewhat counter-
intuitive decision: after all these two components con-
sume 90% of the CPU, but this split slightly reduces
the maximum time it takes to process the incoming
events: we are able to cut about 45 cycles from the
maximum execution time of the events. However, this
small reduction in required clock rate on the “radio
processor” is somewhat offset by the requirements on
the “main processor”, which now needs to handle an
additional 130 cycles of communications every 6400
cycles.

The initial evaluation of the multiple processor sys-
tem seemed very discouraging. In fact, it seemed that
the systems with multiple dedicated processors do not
produce any power saving benefits. However, a care-
ful examination of the application lead us to redesign
some of the TinyOS control structures to produce sig-
nificant power savings.

First, we note that almost 40% of the time critical
tasks is devoted to saving state. These tasks run
within interrupt handlers, and each invocation of an
interrupt costs 60 cycles. This costs is inherent in the

9

TinyOS execution model: we allow events to inter-
rupt threads, and that implies that an event handler
has to save the processor state. In the partitioned
application, the code running on a dedicated radio
controller is well known and understood: it has a very
regular control structure, a well understood interac-
tion between threads and events, and threads with
tightly bounded execution times. Given these prop-
erties, it is possible for us to rewrite the struture of
the component so that there is only one context, and
there is no need to save state on every event. For this
project, we have simply reorganized the code manu-
ally, in principle such transformations should be pos-
sible to automate. The new structure contains only
a single execution context. The execution is time
sliced: the code is effectively a finite state machine
which goes through an atomic transition between two
ticks of the clock. This not only allows us to re-
move the state saving overhead but also to eliminate
the general purpose scheduler, which currently con-
tributes 40 instructions which could have been spent
sleeping.

With the restructured code, we were able to obtain
about 40% savings in instruction counts over the orig-
inal code. Worth noting is the fact that the commu-
nication costs within the restructured module were
quite a bit lower: on each pass through the loop we
chose to poll the UART rather than drive it through
interrupts.

The restructuring of the code has the effect of reduc-
ing the overheads in the application. Running the
entire application within the interrupt context elimi-
nates the need to save state, which corresponds to the
“cheap interrupts” case from Table 4. Furthermore,
in this case we were able to eliminate completely the
scheduling overhead, which enabled further energy
savings. As Table 4 indicates, the elimination of these
overheads reduces the energy requirements of the ap-
plication by 29%, a significant improvement.

5.2 Frequency Scaling

In the previous Section we saw that the application
running on multiple processors can in fact be more
energy-efficient than on a single processor. Now, we
try to extract exactly what features of multiple pro-
cessor design contribute to the power savings.

The total current consumption is the sum over all N

processors p of the current Ip each draws,

IN =
∑

p∈procs

Ip

= NII + (
∑

p∈procs

ρp)IA

= NII + (
1
fT

∑
p∈procs

Kp)IA

= NII + (
K

fT
)IA. (10)

The K term includes cycles spent controlling de-
vices across all processors. As before, this includes
both overhead and essential work. The core work
will be very similar in both single- and multiple-
processor implementations. We assume a shared
memory model and hold the cycles spent performing
work, Kw, the same for both cases.

To keep the analysis simple, we also defer synchro-
nization issues to the scheduling system, assuming
it is perfect. This seems unrealistic, but many ini-
tial applications for simple networked sensors do not
need heavy synchronization. One processor can pro-
cess its measurements and write them to a slot in
memory; another can read from that slot periodically
and communicate what it finds. If the processing
runs for a bounded time and is triggered by a real-
time event, then the results are valid at another real
time, much like the establishment of output signal
in a circuit. The cascading real-time constraints in-
crease the scheduling complexity, but the scheduling
remains reasonable if the initial application is simple.

If using N processors lowers the necessary execution
frequency to f/N , when will moving from one proces-
sor to N processors give us an energy savings? Let
the total work plus the total overhead be the same for
both one and N processors. The single processor has
the same utilization ρ as above. Using ρ for K/fT in
the multiple processor current will give comparisons
from the single processor viewpoint. It is important
to remember that ρ depends inversely on f , so scal-
ing f by 1/N, say, will scale ρ by N . We will continue
to use fm in the following sections for the constant
value of ρf = K/T with the same caveats.

We want to know when I(f) > IN (f/N). Expanding
IN (f/N) yields

IN (f/N) = aIf +NbI + aAfm +NbAρ, (11)

giving the unfortunate result that I(f) > IN (f/N) is
true only when

(1−N)(bI + bAρ) > 0. (12)

10

Physically, both bI and bA must be non-negative, and
N is an integer greater than one, so this is never pos-
sible. It may be possible to scale frequency more
rapidly than 1/N. Using multiple processors reduces
the real-time scheduling pressures and can result in a
drastic contraction in frequency. The frequency scal-
ing necessary for energy savings can be found by ex-
amining the inequality IN (g(f,N) ·f) < I(f), but we
yet to extract from it a simple, meaningful result.

5.3 Frequency Scaling and Overhead
Reduction

Is it possible to decrease the total current even with a
simple frequency scaling? While lowering the neces-
sary frequency decreases the active and idle currents
at a given voltage, we have also seen that increasing
the frequency may decrease the total current neces-
sary by eliminating overhead cycles. Multiple proces-
sors can allow both frequency reduction and overhead
elimination. Previously we had to increase execu-
tion frequency to remove context-switching overhead,
but now we can consider handling multiple contexts
through processor allocation. We can also simplify
or remove the scheduler, reducing the overhead cy-
cles even further.

Again, separate the work and overhead cycles as
K = Kw + Ko for a single processor utilization of
ρ = ρw + ρo. Now assume that we can remove the
overhead cycles by using N processors while simul-
taneously scaling the frequency by 1/N. This gives a
total current of

I ′N (f/N) = aIf +NbI + aAfρw +NbAρw. (13)

Determining when I ′N (f/N) < I(f) is equivalent to
the test

(N − 1)(bI + bAρw) < IA(f)ρo. (14)

The left side, (N−1)(bI+bAρw), is the current drawn
by the additional processors. The right, IA(f)ρo, is
the current drawn from the overhead cycles. If the
frequency scales with 1/N, then the tasks can be par-
titioned over as many as

N < 1 +
IA(f)ρo
bI + bAρw

(15)

processors while using less current.

Note that scaling the frequency by 1/N kept the aI
terms equal, eliminating the primary difference be-
tween a processor’s stop and idle modes from the

comparison. However, if the stop mode requires a
few cycles to restart fully, they can affect the thresh-
old. The restart overheads will occur in the places
where context switches were not necessary, when an
interrupt-driven event is triggered and nothing else
is active. These may occur more often in the mul-
tiple processor case. The restart cycle counts will
be needed when examining a particular application.
Once obtained, adding the different restart cycles, Kr

and Kr,N , as overheads to both cases is equivalent to
adding Kr −Kr,N to Ko and Kr,N to Kw in the pre-
vious inequalities. If Ko +Kr −Kr,N < 0, the multi-
processor restart cycles dominate, and the right side
of Equation 14 is negative. Using more processors
with only a 1/N scaling consumes more energy. One
can examine applying a general scaling g(f,N) to f ,
but we have yet to fully explore those results.

But what if various scheduling constraints conspire
to disallow frequency scaling? The comparison of the
additional current for the processors to that for the
overhead gives

(N − 1)II(f) < IA(f)ρo (16)

for I ′N (f) < I(f). So it may still be a win, especially
if the system uses the processor’s stop mode.

5.4 Multiple Execution Units and
Contexts

We have demonstrated that spreading tasks across
multiple processors can decrease the power consumed
by a networked sensor. In the derivation of Equa-
tion 10, we assumed that the idle currents of mul-
tiple processors accumulated into NII . This models
the current needs of multiple physical processor chips,
each pulling II over all T . What if they could all share
the same idle current? Then the total current drawn
by the N execution units is

I ′′N = II + IAρw. (17)

This consumes IAρo less current than the simple sin-
gle processor at the same frequency f . The fre-
quency scalings that give energy savings can be
bounded by solving the appropriate quadratic from
I(f)− I ′′N (g(f,N)f).

Multiple execution units feeding from the same idle
current provide an easy way to eliminate overhead.
Our assumption that the total work cycles stayed the
same when partitoned over the units provides the
same result with a single execution unit that sup-
ports multiple hardware contexts. Multiple hardware

11

contexts and threaded processors give performance
boosts in general purpose computers [15], and they
also appear to give energy savings in small, event-
driven sensors. Similar advantages come from data-
flow designs and register partitioning.

6 Related Work

Lately, energy consumption has been a hot topic.

Shin and Choi [14] have adapted a fixed-priority, pre-
emptive, real-time scheduler for low power devices.
They demonstrate a significant power reduction for
complex applications on a larger system that can
vary both frequency and voltage dynamically while
instructions are executed. They slow the processor
down when only one task is available for execution,
greedily stretching to 100% utilization. Their model
includes the time for frequency and voltage changes
but preemption overhead.

A wide variety of techniques for lowering power con-
sumption are surveyed by Lorch and Smith [8]. While
their primary focus is on general-purpose portable
computers, they also discuss interaction with wireless
communication and other i/o devices. They cover
power control interactions between components in a
user-oriented system, where we focus strictly on the
processor in a sensor network. We hope that the un-
derstanding gained from our focus can contribute to a
needed whole-system perspective for networked sen-
sors.

Henkel examines the power implications of hardware-
software partitioning in [5]. His method finds high-
energy pieces of software and moves them into dedi-
cated asic cores rather than adding additional power
controls to the main processor’s hardware. The asics
not only consume less energy for the same function
but also perform it more quickly. The speed reduces
overhead concerns, giving an additional boost. He
finds both faster and more efficient execution in a va-
riety of problems, although his particular algorithm
does produce a large slow-down for one application.

Kirovski and Potkonjak develop an algorithm for
power-conscious task partitioning in a hard real-time
system [7]. Their applications, information stream-
ing, and task model are similar to ours, but they use
heterogenous processors and work at a level where
the frequency is determined by internal cmos delay
bounds. Also, they give each real-time task a ded-
icated processor, eliminating all context-switching
overhead from the beginning.

7 Conclusions

We have presented the tradeoffs between the single-
and multiprocessor designs for networked sensors.
Neither design automatically creates a power efficient
system. We have shown that it is possible to save en-
ergy while running on multiple processors; we have
also shown that this is not true for mere partition-
ing of an existing application. The main observa-
tion from the study is that we do not save energy by
simple frequency scaling, but rather from the elimi-
nation of various types of overhead. The avoidable
overhead is very strongly dependent on a particular
architecture. In a single processor system, most of
the overhead comes from task switching, in the form
of either scheduling overhead, or in the form of con-
text saving. In the multiple processor design, the
software overhead is introduced by the costs of extra
communication. It is not the multiple ALUs or the
multiple memories that produce the energy savings,
but rather the simplified control structure, and the
ability to eliminate context switches. The optimal ar-
chitecture for networked sensors should combine the
best features of both design types, by building upon
a single processor with hardware support for multiple
contexts. Architectures like SPARC with its register
windows or PIC with a very large register set might
be very appropriate for the networked sensors.

References

[1] Association for Computing Machinery. Proceed-
ings of the 36th ACM/IEEE conference on de-
sign automation. Acm Press, June 1999.

[2] Atmel, Inc. At90s4434/ls4434/s8535/ls8535

Preliminary (Complete) Datasheet.

[3] N. C. Audsley, A. Burns, M. F. Richardson, and
A. J. Wellings. Hard real-time scheduling: The
deadline monotonic approach. In Proceedings of
the 8th IEEE Workshop on Real-Time Operating
Systems and Software, Atlanta, May 1991.

[4] Kevin Bagett. Avr simulator and disassem-
bler. http://members.xoom.com/kb_badgett/,
2000.

[5] Jörg Henkel. A low power hardware/software
partitioning approach for core-based embedded
systems. In Proceedings of the 36th ACM/IEEE
conference on design automation [1], pages 122–
127.

12

http://members.xoom.com/kb_badgett/

[6] Jason Hill, Robert Szewczyk, Alec Woo, Seth
Hollar, David Culler, Kristofer Pister. Sys-
tem architecture directions for networked sen-
sors, 2000.

[7] D. Kirovski and M. Potkonjak. System-level
synthesis of low-power hard real-time systems.
In Proceedings of the 34th ACM/IEEE confer-
ence on design automation, pages 697–702. Acm

Press, June 1997.

[8] Jacob Lorch and Alan Smith. Software strate-
gies for portable computer energy manage-
ment. IEEE Personal Communications Maga-
zine, 5(3):60–73, June 1998.

[9] James McLurkin. Algorithms for distributed
sensor networks. In Masters Thesis for Electri-
cal Engineering at the Univeristy of California,
Berkeley, December 1999.

[10] Massoud Pedram and Qing Wu. Design consid-
erations for battery-powered electronics. In Pro-
ceedings of the 36th ACM/IEEE conference on
design automation [1], pages 861–866.

[11] K. S. J. Pister, J. M. Kahn, and B. E. Boser.
Smart dust: Wireless networks of millimeter-
scale sensor nodes, 1999.

[12] RF Monolithics. Tr1000 916 Mhz Hybrid
Transceiver.

[13] Philips Semiconductors. The I2C-
bus specification, version 2.1. http:
//www-us.semiconductors.com/acrobat/
various/I2C_BUS_SPECIFICATION_\%3.pdf,
2000.

[14] Youngsoo Shin and Kiyoung Choi. Power con-
scious fixed priority scheduling for hard real-time
systems. In Proceedings of the 36th ACM/IEEE
conference on design automation [1], pages 134–
139.

[15] Radhika Thekkath and Susan J. Eggers. The
effectiveness of multiple hardware contexts. In
Proceedings of the 6th International Conference
on Architectural Support for Programming Lan-
guages and Operating Systems, pages 328–337.
Acm Press, October 1994.

13

http://www-us.semiconductors.com/acrobat/various/I2C_BUS_SPECIFICATION_% 3.pdf
http://www-us.semiconductors.com/acrobat/various/I2C_BUS_SPECIFICATION_% 3.pdf
http://www-us.semiconductors.com/acrobat/various/I2C_BUS_SPECIFICATION_% 3.pdf

	1 Introduction
	2 Architecture Model
	2.1 Task Model
	2.2 Hardware Model

	3 Experimental Platform
	3.1 Hardware organization
	3.2 TinyOS
	3.3 Application implementation

	4 One Processor
	4.1 Microbenchmarks
	4.2 TinyOS measurements
	4.3 Simple Analysis of One Processor
	4.4 One Processor with Overhead

	5 Multiple Processors
	5.1 Multiple processor experiment
	5.2 Frequency Scaling
	5.3 Frequency Scaling and Overhead Reduction
	5.4 Multiple Execution Units and Contexts

	6 Related Work
	7 Conclusions

