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Abstract. Tackling the current volume of graph-structured data re-
quires parallel tools. We extend our work on analyzing such massive
graph data with the first massively parallel algorithm for community
detection that scales to current data sizes, scaling to graphs of over 122
million vertices and nearly 2 billion edges in under 7300 seconds on a
massively multithreaded Cray XMT. Our algorithm achieves moderate
parallel scalability without sacrificing sequential operational complexity.
Community detection partitions a graph into subgraphs more densely
connected within the subgraph than to the rest of the graph. We take
an agglomerative approach similar to Clauset, Newman, and Moore’s
sequential algorithm, merging pairs of connected intermediate subgraphs
to optimize different graph properties. Working in parallel opens new ap-
proaches to high performance. On smaller data sets, we find the output’s
modularity compares well with the standard sequential algorithms.

1 Communities in Graphs

Graph-structured data inundates daily electronic life. Its volume outstrips the
capabilities of nearly all analysis tools. The Facebook friendship network has over
500 million users each with an average of 130 connections [8]. Twitter boasts over
140 million new messages each day [23], and the NYSE processes over 300 million
trades each month [19]. Applications of analysis range from database optimization
to marketing to regulatory monitoring. Global graph analysis kernels at this scale
tax current hardware and software architectures due to the size and structure of
typical inputs.

One such useful analysis kernel finds smaller communities, subgraphs that
locally optimize some connectivity criterion, within these massive graphs. We
extend the boundary of current complex graph analysis by presenting the first
algorithm for detecting communities that scales to graphs of practical size, over
120 million vertices and nearly two billion edges in less than 7300 seconds on a
shared-memory parallel architecture with 1 TiB of memory.

Community detection is a graph clustering problem. There is no single, univer-
sally accepted definition of a community within a social network. One popular
definition is that a community is a collection of vertices more strongly connected
than would occur from random chance, leading to methods based on modular-
ity [16]. Another definition [21] requires vertices to be more connected to others
within the community than those outside, either individually or in aggregate. This
aggregate measure leads to minimizing the communities’ conductance. We con-
sider disjoint partitioning of a graph into connected communities guided by a local
optimization criterion. Beyond obvious visualization applications, a disjoint par-
titioning applies usefully to classifying related genes by primary use [25] and also



to simplifying large organizational structures [13] and metabolic pathways [22].
We report results for maximizing modularity, although our implementation also
supports minimizing conductance.

Contributions. We present the first published parallel agglomerative commu-
nity detection algorithm. Our algorithm scales to practical graph sizes on available
multithreaded hardware but with the same sequential operation complexity as
current state-of-the-art algorithms. Our approach is both natively parallel and
simpler than most current sequential community detection algorithms. Also, our
algorithm is agnostic towards the specific criterion; any criterion expressible as
individual edge scores can be maximized (or minimized) locally with respect
to edge contractions. Our implementation supports four different criteria, and
here we report on two modularity-maximizing criteria. Validation experiments
show that our implementation yields solutions comparable in quality to the
state-of-the-art sequential agglomerative algorithm.

Capability and performance. On a 128 processor Cray XMT with 1 TiB of
memory, our algorithm extracts communities from a graph of 122 million vertices
and 1.99 billion edges into communities by maximizing modularity in under 7300
seconds. Currently, our method for generating artificial test data rather than our
community detection algorithm is limiting our largest input sizes. Our edge-list
implementation scales in execution time up to 128 processors on sufficiently large
graphs.

2 Agglomerative Community Detection

Agglomerative clustering algorithms start with every vertex in a singleton com-
munity. Edges are scored through some metric, and a local optimization heuristic
chooses the next edge(s) to contract. To increase available parallelism, we choose
multiple contraction edges simultaneously as opposed to Clauset, Newman, and
Moore [7]’s sequential algorithm. Chosen edges form a maximal cardinality match-
ing that approximates the maximum weight, maximal cardinality matching. We
consider maximizing metrics (without loss of generality) and also target a local
maximum rather than a global, possibly non-approximable, maximum. There are
a wide variety of metrics in use for optimizing and evaluating communities [10].
We focus on the established measure modularity defined in Section 2.2.

2.1 Defining the algorithm

We take an input graph G0 = (V0, E0) and re-interpret G0 as a community
graph G = (V,E). Each vertex in a community graph is a disjoint subset of
the input graph’s vertices, and we begin with V = {{i}|i ∈ V0}. Each edge i, j
in E corresponds to an edge between communities, E = {{i, j}|∃i0 ∈ i∃j0 ∈
j such that {i0, j0} ∈ E0}. Assign edge weights w({i, j}) to count the number
of edges between communities i and j. To make matrix expressions simpler, let
self-edge weights w({i, i}) count the volume or sum of degrees where both end
vertices lie in community i. Our algorithm will contract edges {i, j} in G to
form a new community graph G′ with vertices representing the union of disjoint
communities i and j.

We define our agglomerative algorithm with matrix operations. Consider the
typical mapping of an undirected graph G = (V,E) with edge weights w({i, j}) to
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a sparse, symmetric adjacency matrix A. The matrix A has dimension |V | × |V |,
where |V | is the number of vertices in G. The matrix has two non-zero entries for
each edge {i, j} ∈ E with i 6= j, A(i, j) = A(j, i) = w({i, j}). Self edges appear
along the diagonal, A(i, i) = w({i, i}).

All of Section 2.2’s metrics use additive edge weights. Represent a set of edge
contractions with a matching matrix M of dimension |V ′| × |V |, where |V ′| is
the number of vertices of the contracted graph, and entries M(i, j) = 1 when
vertex j ∈ V contracts into vertex i ∈ V ′. A maximal matching should produce a
matrix M with as many degree-two columns as possible, and ideally |V ′| ≈ |V |/2.
With M and additive weights, we represent the graph contraction from A to A′

with A′ = M ·A ·MT .
Our agglomerative algorithm is agnostic of local maximization criteria. Given

a metric of interest, our algorithm works abstractly as follows:
1. Construct the symmetric sparse matrix A representing undirected

multi-graph G and its edge multiplicities.
2. Set the initial trivial community mapping C := I, the |V |2 identity matrix.
3. While the number of communities and the largest community size have not

reached a pre-set limit, repeat:
(a) Compute a sparse matrix of edge scores according to the optimization

metric given A and v.
(b) Compute a matching matrix M on the score matrix to maximize the

metric of interest.
(c) If the matching does not change the number of vertices, quit.
(d) Contract A := M ·A ·MT .
(e) Update the community mapping C := M · C.

When a matching does not change the number of vertices, no edges increase the
metric of interest. Section 3’s parallel implementation works with an edge list
data structure rather than typical compressed formats and implements the sparse
operations directly.

Typical sequential agglomerative algorithms like Clauset, et al. (CNM) [7]’s
method contract a single edge in each iteration. Our algorithm generalizes this
sequential approach by identifying many contraction edges simultaneously. If the
matching M contracts most edges of the graph at once, most edge scores will
need recomputation. This differs from CNM [7]’s incremental edge scoring but
does not affect the algorithm’s asymptotic complexity.

Assuming all edges are scored in a total of O(|E|) operations and some heavy
weight maximal matching is computed in O(|E|) [20] where E is the edge set of
the current community graph, each iteration of our algorithm’s inner loop requires
O(|E|) operations. As with other algorithms, the total operation count depends
on the community growth rates. If our algorithm halts after K contraction phases,
our algorithm runs in O(|E| ·K) operations. If the community graph is halved
with each iteration, our algorithm requires O(|E| · log |V |) operations. If the graph
is a star, only two vertices are contracted per step and our algorithm requires
O(|E| · |V |) operations. This matches experience with the CNM algorithm [24].

2.2 Local optimization metrics

Here we score edges for contraction by modularity, an estimate of a community’s
deviation from random chance [16,3]. We maximize modularity by choosing the
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largest independent changes from the current graph to the new graph by one
of two heuristics. Minimization measures like conductance involve maximizing
changes’ negations.

Modularity. Newman [15]’s modularity metric compares the connectivity
within a collection of vertices to the expected connectivity of a random graph
with the same degree distribution. Let m be the number of edges in an undirected
graph G = G(V,E) with vertex set V and edge set E. Let S ⊂ V induce a graph
GS = G(S,ES) with ES ⊂ E containing only edges where both endpoints are
in S. Let mS be the number of edges |ES |, and let mS be an expected number
of edges in S given some statistical background model. Define the modularity
of the community induced by S as QS = 1

m (mS −mS ). Modularity represents
the deviation of connectivity in the community induced by S from an expected
background model. Given a partition V = S1 ∪ S2 ∪ · · · ∪ Sk, the modularity of

that partitioning is Q =
∑k

i=1QSi
.

Newman [15] considers the specific background model of a random graph with
the same degree distribution as G where edges are independently and identically
distributed. If xS is the total number of edges in G where either endpoint is in
S, then we have QS = (mS − x2S/4m)/m as in [3]. A subset S is considered a
module when there are more internal edges than expected, QS > 0. The mS

term encourages forming large modules, while the xS term penalizes modules
with excess external edges. Maximizing QS finds communities with more internal
connections than external ones. Expressed in matrix terms, optimizing modularity
is a quadratic integer program and is an NP-complete optimization problem [5].
We compute a local maximum and not a global maximum. Different operation
orders produce different locally optimal points.

Section 3’s implementation scores edges by the change in modularity contracting
that one edge would produce, analogous to the sequential CNM algorithm.
Merging the vertex U into a disjoint set of vertices W ∈ C, requires that the
change ∆Q(W,U) = QW∪U − (QW + QU ) > 0. Expanding the expression for
modularity,

m ·∆Q(W,U) = m (QW∪U − (QW +QU ))

= (mW∪U − (mW +mU )−
(mW∪U − (mW +mU ))

= mW↔U − (mW∪U − (mW +mU )),

where mW↔U is the number of edges between vertices in sets W and U . Assuming
the edges are independent and identically distributed across vertices respecting
their degrees [7],

(mW∪U − (mW +mU )) = m · xW
2m
· xU

2m
, and

∆Q(W,U) =
mW↔U

m
− xW

2m
· xU

2m
. (1)

We track mW↔U and xW in the contracted graph’s edge and vertex weights,
respectively. The quantity xW equals the sum of W ’s degrees or the volume of W .
In Section 2’s matrix notation,∆Q is the rank-one update A/m−(v/2m)·(v/2m)T
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restricted to non-zero, off-diagonal entries of A. The data necessary for computing
the score of edge {i, j} are A(i, j), v(i), and v(j), similar in spirit to a rank-one
sparse matrix-vector update.

Modularity has known limitations. Fortunato and Barthélemy [9] demonstrate
that global modularity optimization cannot distinguish between a single com-
munity and a group of smaller communities. Berry et al. [4] provide a weighting
mechanism that overcomes this resolution limit. Instead of this weighting, we com-
pare CNM with the modularity-normalizing method of McCloskey and Bader [3].

McCloskey and Bader’s algorithm (MB) only merges vertices into the commu-
nity when the change is deemed statistically significant against a simple statistical
model assuming independence between edges. The sequential MB algorithm com-
putes the mean ∆Q(W, :) and standard deviation σ(∆Q(W, :)) of all changes adja-
cent to community W . Rather than requiring only ∆Q(W,U) > 0, MB requires a

tunable level of statistical significance with ∆Q(W,U) > ∆Q(W, :)+k ·σ(∆Q(W, :
)). Section 4 sets k = −1.5. Sequentially, MB considers only edges adjacent to the
vertex under consideration and tracks a history for wider perspective. Because
we evaluate merges adjacent to all communities at once by matching, we instead
filter against the threshold computed across all current potential merges.

3 Mapping Our Algorithm to the Cray XMT

Our algorithm matches the sequential CNM algorithm’s operation complexity
while avoiding potential bottlenecks in priority queues. Here we outline the
mapping from our algorithm to a massively multithreaded shared-memory plat-
form, the Cray XMT. The Cray XMT provides a flat, shared-memory execution
environment; Section 5 discusses other possibilities. The parallel mapping is
straight-forward for this environment and still scales to massive graphs.

The Cray XMT is a supercomputing platform designed to accelerate massive
graph analysis codes. The architecture tolerates high memory latencies using
massive multithreading. There is no cache in the processors; all latency is handled
by threading. Each Threadstorm processor within a Cray XMT contains user-
available 100 hardware streams each maintaining a thread context. Context
switches between threads occur every cycle, selecting a new thread from the pool
of streams ready to execute.

A large, globally shared memory enables the analysis of graphs using a sim-
ple shared-memory programming model. Physical address hashing breaks up
locality and ensures every node contributes to the aggregate memory bandwidth.
Synchronization occurs at the level of 64-bit words through full/empty bits and
primitives like an atomic fetch-and-add. The cost of synchronization is amor-
tized over the cost of memory access. Combined, these features assist developing
scalable parallel implementations for massive graph analysis.

Within our implementation, the edge scoring heuristics (CNM and MB) par-
allelize evenly across the edges. Evaluating the scores for all |E| edges requires
access to O(|E|) scattered memory locations. Our implementation stores the
graph as a vector of self-edge weights and an array of edges {i, j} with i > j,
equivalent to an unpacked lower-triangular sparse matrix representation. Given
a matching M , we implement the sparse projection M ·A ·MT in-place. Vertices
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are relabeled and duplicate edges eliminated using |V | + |E| workspace. The
implementation forms linked lists of potential duplicates and walks that list; we
will see that this list-walking limits our concurrency and ultimate scalability.

To compute the matching M , we begin with a greedy, non-maximal algorithm.
We iterate in parallel across the edge array. Each edge {i, j} checks its end points
i and j. If the current edge is the best possible match seen so far for both i and j,
the edge registers itself with both endpoints. The Cray XMT’s full/empty word
synchronization ensures that edge registration occurs without race conditions.
Because there is no ordering enforced between edges, this provides neither a
maximal nor an approximately maximum weight matching but uses only 2|V |
working space and O|E| operations.

To compute a maximal matching, we run the non-maximal passes until they
converge. On convergence, we have a maximal matching where every edge domi-
nates its neighbors, ensuring a 1/2 approximation to the maximum weight [12,14].
We have not analyzed the convergence rate, but our test cases converge in fewer
than ten iterations.

Our implementation currently does not track the dendogram, or history of
vertex contractions. The dendogram is a tree and can be represented by a |V |-long
vector of parent pointers updated in O(|V |) time per contraction step with no
additional memory use beyond the tree itself.

4 Evaluating Parallel Community Detection

4.1 Parallel performance

We evaluate parallel scalability using artificial R-MAT [6,1] input graphs derived
by sampling from a perturbed Kronecker product. R-MAT graphs are scale-free
and reflect many properties of real social networks. We generate an each R-MAT
graph with parameters a = 0.55, b = c = 0.1, and d = 0.25 and extract the
largest component. An R-MAT generator takes a scale s and edge factor f as
input and generates a sequence of 2s ·f edges over 2s vertices, including self-loops
and repeated edges. We accumulate multiple edges within edge weights.

Our implementation scales to massive graphs, but evaluating strong scalability
against a single Cray XMT processor requires using a smaller data set. We
generate R-MAT graphs of scale 18 and 19 and with edge factors 8, 16, and 32.
Table 1 shows the size of the largest component in each case. We use the largest
component to investigate performance of the core algorithm and not heuristics
for filtering the many singleton vertices and tiny components not connected to
the largest component. The Cray XMT used for these experiments is located
at Pacific Northwest National Lab and contains 128 Threadstorm processors
running at 500 MHz. These 128 processors support over 12 000 hardware thread
contexts. The globally addressable shared memory totals 1 TiB.

Figure 1 shows the speed-up against a single Cray XMT processor from three
runs on each of Table 1’s graphs. The speed-up plot shows some performance
variation from the parallel, non-deterministic matching procedure. Unlike sequen-
tial experience, performance for the CNM and MB scoring methods is roughly
similar. Figure 2 shows that performance plateaus when the matching phase
takes as long as contraction. We are investigating why the phases’ fractions of
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Scale Fact. |V | |E| Avg. degree Edge group

18 8 236 605 2 009 752 8.5 2M
16 252 427 3 936 239 15.6 4M
32 259 372 7 605 572 29.3 8M

19 8 467 993 3 480 977 7.4 4M
16 502 152 7 369 885 14.7 8M
32 517 452 14 853 837 28.7 16M

Table 1. We evaluate performance against multiple graphs generated by R-MAT with
the given scale and edge factor. The graphs are lumped into rough categories by the
number of R-MAT generated edges.

time change with more processors. To test scalability to large data sets, applying
our algorithm to a 122 million vertex and 1.99 billion edge graph generated using
scale 27 and edge factor 16 requires 7258 seconds using CNM and 7286 seconds
using MB.

4.2 Community quality

Computing communities quickly is only good if the communities themselves are
useful. We compare the modularity results from Table 1’s scale 18 graphs between
our parallel implementation and the state-of-the-art implementation in SNAP[2].
Because our parallel matching algorithm is non-deterministic, we use three runs
for each P value. All evaluations are run sequentially through SNAP using the
output community maps.

Figure 3 shows the modularity values from our parallel community detection
implementation against those returned by SNAP. Forcing a more balanced merge
though a maximal matching produces communities not as modular as sequential
CNM optimization, but more modular than sequential MB. The number of
communities also finds a compromise between the different sequential methods.

5 Related Work

Graph partitioning, graph clustering, and community detection are tightly related
topics. A recent survey by Fortunato [10] covers many aspects of community
detection with an emphasis on modularity maximization. Nearly all existing
work of which we know is sequential and targets specific contraction edge scoring
mechanisms.

Zhang et al. [26] recently proposed a parallel algorithm that identifies com-
munities based on a custom metric rather than modularity. Gehweiler and
Meyerhenke [11] proposed a distributed diffusive heuristic for implicit modularity-
based graph clustering. Classic work on parallel modular decompositions [18]
finds a different kind of module, one where any two vertices in a module have
identical neighbors and somewhat are indistinguishable. This could provide a
scalable pre-processing step that collapses vertices that will end up in the same
community, although removing the degree-1 fringe may have the same effect.

Work on sequential multilevel agglomerative algorithms like [17] focuses on
edge scoring and local refinement. Our algorithm is agnostic towards edge scoring
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methods and can benefit from any problem-specific methods. The Cray XMT’s
word-level synchronization may help parallelize refinement methods, but we leave
that to future work. Outside of the edge scoring, our algorithm relies on well-
known primitives that exist for many execution models. The matching matrix M
is equivalent to an algebraic multigrid restriction operator; implementations for
applying restriction operators are widely available.

6 Observations

Our algorithm and implementation, the first parallel algorithm for agglomerative
community detection, scales to 128 processors on a Cray XMT and can process
massive graphs in a reasonable length of time. Finding communities in graph
with 122 million vertices and nearly two billion edges requires slightly more
than two hours. Our implementation can optimize with respect to different local
optimization criteria, and its modularity results are comparable to a state-of-the-
art sequential implementation. As a twist to established sequential algorithms
for agglomerative community detection, our parallel algorithm takes a novel and
naturally parallel approach to agglomeration with maximum weighted matchings.
That difference appears to reduce differences between the CNM and MB edge
scoring methods. The algorithm is simpler than existing sequential algorithms
and opens new directions for improvement. Separating scoring, choosing, and
merging edges may lead to improved metrics and solutions.
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Fig. 1. Execution time on the largest of Table 1’s graphs scales up to 128 processors.
The left plot shows the best speed-up achieved for each edge group. The right plot
shows both the best overall execution time and the best single-processor execution time.
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Fig. 2. Execution time fractions show that performance flattens where the matching
phase takes as much execution time as the graph contraction.
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Fig. 3. Comparing modularity values and the number of communities between our
parallel agglomerative community detection and a separate, sequential implementation
in SNAP shows that ours finds an interesting trade-off between community sizes and
modularity. Graph points are labeled by (scale, edge factor) and show either the
modularity (left) or number of communities (right).
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