
Parallel Bipartite Matching for

Sparse Matrix Computations

Jason Riedy ejr@cs.berkeley.edu

Dr. James Demmel
UC Berkeley

8. Future Work

•Experiment with shared memory

–Local load balancing becomes free

–Doesn’t fit OpenMP well, needs sub-team barriers

•Making refinement converge

– Is there a bound that works for all matrices?

–Can we chose an appropriate bound during
factorization?

•Determining convergence of other ‘refinement’ methods

–Gmres(50) seems to always work.

–Always expensive, sometimes extremely so.

–How does performance vary with D bound?

–Can D be adapted here?

•Try other pivoting strategies that don’t change non-zero
structure

– Swap columns within a supernode?

– Swap rows or cols within a front’s non-update block?

1e-20

1e-15

1e-10

1e-05

1

100000

1e+10

-20 -15 -10 -5 0 5

log2 of relative diagonal perturbation magnitude
|di,i| ≤ 2x‖A‖1

√
ε

Iterative refinement errors: fidapm11

Relative backward error
‖x̃− x‖1/‖x‖1: True (forward) error

1

10

100

1000

-20 -15 -10 -5 0 5

log2 of relative diagonal perturbation magnitude
|di,i| ≤ 2x‖A‖1

√
ε

Iterative refinement: fidapm11

Num. matrix-vector products
Num. diagonal bumps

• Small perturbation
fails

•A + D still numer-
ically nearly singu-
lar

1e-20

1e-15

1e-10

1e-05

1

100000

1e+10

-20 -15 -10 -5 0 5

log2 of relative diagonal perturbation magnitude
|di,i| ≤ 2x‖A‖1

√
ε

Iterative refinement errors: fidap011

Relative backward error
‖x̃− x‖1/‖x‖1: True (forward) error

1

10

100

1000

10000

-20 -15 -10 -5 0 5

log2 of relative diagonal perturbation magnitude
|di,i| ≤ 2x‖A‖1

√
ε

Iterative refinement: fidap011

Num. matrix-vector products
Num. diagonal bumps

•Large perturbation
fails

•D too large relative
to (A + D)−1?

7. Does Static Pivoting Work?

•Actually factoring A + D, D low-rank and diagonal

• Superlu: |di,i| ≤ ‖A‖1
√

ε

–Here, ε is the machine precision parameter.

–Plotted varied by 2−x...

•Using same value d for threshold and |D| ≤ d

•Without iterative refinement, results are mediocre.

•Convergence depends on threshold

– Spectrum of (A + D)−1D

–Don’t yet know if one |di,i| bound works for all matrices

•Other iterative methods (e.g. Gmres(50)) often work
where iterative refinement fails

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70

Sp
ee

d-
up

v.
M

C
64

Processors

lhr11c: Light hydrocarbon recovery

One node
Two nodes

Three nodes
Four nodes

A less ridiculous speed-up from a ‘typical’
matrix.

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 10 20 30 40 50 60 70

Sp
ee

d-
up

v.
M

C
64

Processors

ecl32: Device simulation

One node
Two nodes

Three nodes
Four nodes

The ecl32 matrix has a trivial maximum
matching. The result is a measure of com-
munication overhead.

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60 70

Sp
ee

d-
up

v.
M

C
64

Processors

av41092: Finite element matrix

One node
Two nodes

Three nodes
Four nodes

This speed-up goes beyond cache effects.
The auction resolves very similar bids more
quickly in parallel.

gemat1av41092

 0.1

 1

 10

 100

lh
r1

4c

lh
r7

1c

or
an

i6
78

m
em

pl
us

to
ls

40
00

lh
r1

1c

lh
r1

0c

lh
r0

7clh
r0

4c

ge
m

at
12

ec
l3

2

e4
0r

50
00

Sp
ee

d−
up

Speed−up using 32 processors (2 nodes)

6. So, Scalable?

•Nope, but well distributed

–Does not require whole matrix on any processor

• Speed does not increase linearly with processors...

–Runs out of problem: Small non-zeros per processor

–Trivial matchings eat full communication overhead

•Compared to factorization, time less important

5. Irregular Problem, Irregular Speed-up

•Results from IBM SP/2 at NERSC (seaborg)

•Amazing (ridiculous?) speed-ups

– 8 MB caches quickly hold whole matrix

– Searching many paths through optimization space

–Roughly 3− 7× less speed-up on 128KB cache Pentium
3s, but same curve shapes

• Sequential auction and MC64 (Duff, Koster) speeds are
comparable.

•Using MPI; performance drops when 16-way nodes start
to fill up.

4. Sequence-Merging Reduction

• Simple max-reduction over price array: large slow-down

• Instead, merge the few price changes / bids

•Not supported directly by MPI collective communication

–But same communication structure. . .

•Can work in butterfly pattern to reduce latency

–Bids appear in different orders, but have same winners

–Resolve ties by bidder (processor) number

3. Parallel Auctions

•Core loop is simple and completely local

–Examines non-zeros adjacent to a column for the best
deal

•Each processor runs a local auction to completion.

•Processors merge results, global losers re-matched

• Send only changes, not full price vectors

•Requires a special reduction-like operation

2. Matching by Auction Algorithm

•Developed by Bertsekas, et al.

•Reduce to optimization problem:

–Maximize Tr ATX over permutation matrices,
A ∈ <N×N .

–Dual: Maximize prices p and profits π such that

p1T + 1Tπ ≤ C − ε

– Slackness criteria:

xij(cij − ui − vj) ≤ ε

•Places a bid, moving the prices and possibly ejecting a
losing column from the matching

•Finds solution within Nε of optimum.

–Can start with large ε and scale down.

1. Goal: Scalable Direct Linear Solver

•Numerical factorization scalable from static pivoting

–Olschowka and Neumaier: Place large elements on
diagonal

–Modify any tiny pivots during factorization

–Demonstrated by distributed Superlu (Li, Demmel)

• Static pivoting is weighted bipartite matching

–Augmenting path algorithms not parallel

•Can this be made ‘scalable’?

–This is a fast pre-processing step. Heavy lifting not
allowed.

– Scalable is too high a target.

–Distributed, however, is fine.

