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Abstract

Floating-point arithmetic is often seen as untrustworthy. We show
how manipulating precisions according to the following rules of thumb
enhances the reliability of and removes surprises from calculations:

e Store data narrowly,

e compute intermediates widely, and

e derive properties widely.
Further, we describe a typing system for floating point that both supports
and is supported by these rules. A single type is established for all in-
termediate computations. The type describes a precision at least as wide
as all inputs to and results from the computation. Picking a single type

provides benefits to users, compilers, and interpreters. The type system
also extends cleanly to encompass intervals and higher precisions.

1 Introduction

Programmers are generally wary of floating-point arithmetic. Most consider
it an unfortunate approximation. Programmers are generally advised never to
trust floating-point computations unless they are very precise. Even then, most
avoid ever testing numbers for equality, and almost all consider unexpected
results a problem of the arithmetic.

Why is that? The features in IEEE754 [13] were developed to ensure that
programmers could create accurate, safe, and unsurprising code. Yet many
of these features remain unavailable to programmers, trapped under levels of
programming systems that consider them unimportant or even ill-conceived.

Here we consider one aspect of how floating-point computations are exposed
to programmers, through control of the precisions available. We find that higher
precisions do not provide a solution on their own, but that combining precisions
judiciously can reduce or even eliminate the need for recriminations against
floating-point arithmetic. We should not simply throw higher precisions against
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Type Significand width €

Single 24 bits 2724 ~ 6.0 x 1078
Double 53 bits 2753~ 1.1 x 10716
Extended* 64 bits 2761 1.1 x 10710
Quadruple 113 bits 27118 ~ 9.6 x 1073

Table 1: IEEE754 floating-point precisions, where extended is the double-
extended type as implemented by Intel and Motorola

problems but rather consider the interplay between wide and narrow precisions
when choosing data types for reliable software.

We maintain that the following rules of thumb help reduce the incidence of
surprises [19]:

e Store data in the narrowest representation reasonable,
e compute intermediate results in the widest representation feasible, and
e derive important properties in wider precisions.

Each rule supports the others, although at first they appear contradictory.

Assisting these rules in language systems requires an examination of evalua-
tion disciplines. A language or its compiler must specify to which precision any
given floating-point arithmetic expression is evaluated. There are only three
sensible evaluation disciplines: strict, widest needed, and widest feasible.

Strict evaluation is a local typing; every subexpression’s result is delivered
in the widest precision of its immediate inputs. Widest need generalizes this to
the entire expression. The widest input to a given expression determines the
result type of all subexpressions. Evaluating to the widest feasible type finds the
widest needed precision and then expands that if possible to the widest precision
available that runs quickly. On many architectures, this corresponds to double
precision. Intel architectures provide an extended scalar precision at the same
speed, so there the widest feasible precision is no narrower than extended. Note
that if not all variables are annotated with types, or if they are annotated with
an expression type, expressions can span large amounts of the source code.

Section [2| demonstrates how applying these rules of thumb helps make some
simple calculations accurate. Then Section |3| describes type system support for
these rules of thumb. We demonstrate that the widest feasible and widest needed
disciplines not only make numeric sense, they also make traditional arithmetic
typing problems simpler. Section [4| presents implementation considerations,
including some subtleties and possible optimizations. Extending the type system
to intervals and further precisions is covered in Section Finally, Section [0]
offers concluding remarks, and Section [7] points to problems that remain.

The precisions used through most of the discussions are defined by IEEE 754E|
and are given in Table 1] The € term is half the distance from 1.0 to the next

I'm taking for granted that quadruple precision will be included in the revision.



largest floating-point number in the same precision. Numerical errors in single
are generally modeled as multiplicative perturbations by 1+ § with |§| < e [9].

2 DMotivation

As in [27], examine what happens when we comput f(z) = sin®x + cos?x
from single-precision inputs ranging from 0 to 7/4 in steps of 2720, If all in-
termediate quantities are computed in single-precision, we find that 91579 of
the computed values are not equal to one! Computing everything and return-
ing a result in double and quad precision produces 88 169 and 90 623 surprising
values, respectively. Increasing the precision does not significantly improve the
results.

Now compute a single-precision result from f and a single-precision x evalu-
ating all intermediate terms to double precision. How many values are not one?
None. The same lack of surprise comes from quadruple precision. Computing
with more precision than the data and output appeared to ‘deserve’ produced
the result users should expect.

Increasing precision does not remove the effects of finite precision, but higher
precision can forestall their onset when used appropriately. Simple problems can
then be handled simply.

2.1 Evaluate Widely and Examine Narrowly

Do narrow data deserve wider intermediates? Consider Figure The graphs
depict the polynomial

p(z) = 2® — 452% 4 675z — 3375 (1)

with single-precision coefficients and around 4 000 single-precision inputs x from
14.8 to 15.2. The coefficients can be converted to binary floating point exactly.

Now p(z) = (z — 15)? algebraically, so the interval spans a triple root. Eval-
uating expanded polynomials near roots involves a good deal of cancellation.
The higher the root’s multiplicity, the wider the region of arguments where
cancellation occurs. If the intermediate variables are too narrow, all the infor-
mation that cancellation would reveal is lost. The cancellation is accused of
being destructive, while the information was lost to a too-narrow precision.

Figure depicts this graphically. The polynomial is evaluated simply.
Each term is individually evaluated in single precision by multiplying the coef-
ficient with x repeatedly, then the term is added into a single-precision accu-
mulator. Clearly, a great deal of information is lost.

Imagine passing this evaluation to a root finding routine that finds roots by
identifying sign changes. How many roots can this routine find? Such routines
require tolerances to avoid finding huge numbers of roots, increasing the range of
numbers treated as zero. What users would suspect a polynomial representable
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Figure 1: The polynomial 3 — 4522 +675x — 3375 = (z —15)3 evaluated near its
root, 15. The graphs show values from single-precision intermediates without
and with Horner’s rule, and double-precision intermediates without Horner’s
rule.

exactly in single precision would require a tolerance around 2 x 1073 when
normalized single precision extends to almost 107387
People with some training in computer science might remember a faster way
to evaluate a polynomial, Horner’s rule. With Horner’s rule, we re-write the
polynomial as
p(z) = ((x — 45) x x + 675) x x — 3375. (2)

Evaluation proceeds by evaluating the simple expressions into an accumulator
from the inside out. Not only is it faster, it is also more stable in floating-point
arithmetic. Figure demonstrates the improved stability.

An error analysis of both evaluation techniques gives error bounds that are
fairly tight; the bounds match each plot’s deviation well. If p(z) is the exact
value of the polynomial, and psimple (%) and prorners(z) are the values resulting
from the corresponding evaluations in single precision, then

|p(£E) - psimple(z)| < 18<€sing1e’€(pa x)ﬂ and (3)

\p(m) - pHOrner’s(x)| S 6Esingle/<’(pa x)v (4)

where k(p,z) = |23 + | — 4522| + |675x| + | — 3375|. Given error bounds like
these, how then can we generate the smooth, clean plot in Figure

The trick is that both bounds include a multiplicative factor of egingle = 2724,
Computing the intermediate values to double replaces this with eqouple = 27°% <



2 . . . . . . . .
E5ingle- Otoring the result in single precision commits one more error, giving an

error bound for the simple method with double intermediate precision as

|p(l’) - pdouble($)| S Esingle + 185d0ub1e’<¢(pa -T) (5)

If 18€doublek(P; ) K Egingle, a8 it is here, this is roughly the same as computing
p(z) ezxactly and rounding it to single precision. This produces the plot in
Figure and provides excellent input to a root finder.

There are polynomials p of degree d where the necessary 2d2egouplof(p, ) <
Esingle does not hold in regions around their multiple roots. Higher intermediate
precision still improves the evaluation of those polynomials, and it decreases
the number of polynomials that misbehave. In general, using higher precision
intermediate results reduces the number of problems that produce surprising
results. Storing the results back to a narrower precision further reduces the
number of surprises, often giving the result expected from the input data.

2.2 Wider Precisions for Properties

So why would you want results more precise than an expression’s inputs? We
just argued that narrowing results to the input precisions reduces surprise, so
why do we maintain that wider results can be less surprising? The difference is
in a computation’s intent. When results are computed to stand on their own,
they should be narrowed appropriately. Results computed to express derived
properties should be maintained in higher precisions.

Consider two different representations of a quadratic polynomial with one
as the first coeflicient,

p(z) = pe(x) = 2% — 9z — 10.25

prle) = (m—%j@) (m—g‘j@> (6)

~ (z — 10.02)(z — (—1.02)).

The first is a representation by coefficients, denoted p., and the last is by its
roots, denoted p,..

What properties relate the different representations? One obvious relation-
ship is that either representation should evaluate to zero at the roots. Now
consider deriving p, from p. through the quadratic equation. In other words,
we let p.(z) = (x —ry)(x —r_) with

9+ v9%x9—4%10.25
- > 7)

evaluated to finite precision. Let the inputs be given in single precision, and
calculate all intermediate quantities to double precision.

If the resulting roots are returned in single precision, evaluation at the larger
gives

T+

Pe(T4 single) =~ —2.50 x 1075, (8)



The value —2.50 x 1076 feels a bit large for something that should be zero.
Someone who has been presented with very little numerical analysis and Table[]]
might consider 4 - 10.25 - ggingle ~ 2.46 x 1076 a reasonable knee-jerk threshold
and not feel too cheated. Someone who simply typed in a number and expected
zero would feel quite cheated.

If the root is maintained in double precision, the same evaluation gives

pc(r—i-,double) ~ 1.77 x 10716. (9)

This feels much better. Most people would consider this reasonably close to zero
when the inputs are around one to ten, so the computed roots feel reasonably
close to the actual roots of p.. Indeed, when the same procedure is carried out
in extended or quadruple precision, evaluating at the computed roots of this
quadratic actually produces zero.

Another maintainable property is found through identifying terms in

pe(z) = 22 + bz + ¢ = 22

— (s 1 )T+ = pr(a). (10)
In the case given above, rounding the true roots to single precision does maintain
this property. For the polynomial ¢(z) = 22 —224+0.5 = (z—(1++/2/2))(z—(1—
\/5/2)), however, the third coefficient, 0.5, suffers an error of almost 6.0 x 10~8
when computed from roots rounded to single precision. Rounding the roots to
double precision produces the exact coefficient representation.

So computing alternative representations of input data to the same precision
as that data may result in a surprising loss of fidelity between representations.
This occurs frequently in graphics and simulations, where successive transfor-
mations of a model may change edge lengths and angles. Standard practice
there is to hold the model and the cumulative transformations separately and
to a coarse precision. Alternative representations, like the transformed model’s
coordinates, are computed as needed and to enough precision to make shading
or intersection decisions. In these cases, the additional precision is necessary to
maintain relevant properties held by the input data.

2.3 Shrinking Artificial Singularities

Mathematical expressions sometimes include singularities, inputs around which
the expression diverges or becomes degenerate [29]. For example, the function
f(z) = 1/z has a singularity around = = 0. Floating-point implementations
of mathematical expressions also include singularities. These are inputs where
the computational result differs from the mathematical result significantly. The
mathematical result may be well-defined, but the implementation produces a
divergent result, ‘oo, or a NaN. Alternately, the computational result may
be a number at a mathematical singularity. Every mathematical singularity is
enclosed in a region of floating-point singularities. A particular implementation
of an expression may also introduce artificial singularities, ones which do not
enclose a mathematical singularity.



Computing intermediate quantities to wider precisions than their inputs re-
duces not only surprise at the numerical results but also the region of floating-
point singularities and the number of artificial singularities. Consider the quadratic
formula employed for finding the roots of az? + bx + ¢ = 0 with a # 0. The
quadratic formula involves the square root of the discriminant, v/62 — 4ac. In
real arithmetic, negative numbers induce a singularity under square roots, so
one would expect a singularity when b — 4ac < 0 mathematically. Assume
again that the coefficients are kept in single precision.

If all computation proceeds in single precision as well, we may have the
computed b? —4ac = 0 when mathematically b? —4ac < 0, introducing a floating-
point singularity. The mathematical singularity corresponds to a parabola that
does not cross the = axis. The floating-point singularity is that a few parabola
which do not cross the x axis are considered to be tangent to that axis.

Now if the computations are carried out in double precision, the multiplica-
tions b? and ac are exact. Disregard overflow for the moment and note that the
floating-point singularity occurs when b? ~ 4ac. In this case, subtraction with a
guard digit will produce the exact answer, and the singularity vanishes. Overflow
in either b2 or 4ac introduces an artificial floating-point singularity, producing
any of oo, —oo, or NaN depending on which quantities overflow. Computing in
double precision from single-precision coefficients removes this artificial singu-
larity as well.

3 Type System Support

Traditionally, number types have been poorly modeled by record-based object
systems and their subtyping relationships. These systems either deny any im-
plicit relationships between different number types [25] or rely on complex pat-
terns that delay most type decisions until run-time [I1]. Systems based on
generic functions, like CLOS and Dylan, or typeclasses, like Haskell [I7], avoid
the issue through making all precisions sub-types of a f1loat class and employing
complex “rules of precision contagion” [3]. Others address numeric types in ad-
hoc fashions, mandating strict evaluation [I] or providing numerous possibilities
of silent conversions. And some systems pretend that floating-point numbers
fit in a tower of types stretching from arbitrary-length integers to floating-point
complex numbers [21], although there is no real subtype relationship spanning
that range.

Kernighan and Ritchie’s C definition [22] offered a hardware-driven alter-
native. The PDP-11 on which C was conceived offered only double-precision
registers, while the language provided both single- and double-precision vari-
ables. The implementation simply converted all single-precision operands into
double-precision in any expression, so all operators in an expression worked only
with double-precision data.

This widest-feasible evaluation over a limited type domain allowed the lan-
guage to support multiple precisions without complicated dispatching rules.
Unfortunately, later versions of C allow strict evaluation [2]. This necessitates
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Figure 2: The floating-point types in Table [I] fit into a natural hierarchy. Pre-
cision exponent bit lengths are given in parentheses.

a complicated system of potential conversions scattered throughout a sequence
of expressions.

Both widest-need and widest-feasible evaluation disciplines offer the ability
to model floating-point types cleanly without multiple dispatching or convoluted
conversions. A sequence of operations is given a single input and output type; all
data entering the operations are expanded to that type implicitly. Results stored
to narrower precision must be converted explicitly. There are no operations
which rely on more than one input type; multiple dispatch and ad-hoc conversion
rules are unnecessary.

Section[2]demonstrated that wide evaluation and explicit narrowing helps de-
lay the onset of floating-point artifacts. The widest-feasible expression discipline
unifies single-dispatch typing semantics with helpful floating-point semantics.

3.1 Floating-Point Types

The IEEE floating-point types fall into a natural hierarchy. Each single-precision
value corresponds to exactly one double-precision value, which then corresponds
to exactly one extended-precision value and one quad-precision value. This gives
the subtype relationship shown in Figure [2] Let the set of floating-point types
be denoted as Prec.

Mathematical operations on floating-point types must be overridden to sup-
port each precision. Traditionally, if precisions are to be mixed, some form
of multiple dispatch is provided. If precisions are segregated, however, single
dispatch suffices. Languages limited to single dispatch either require explicit
conversions or provide ad-hoc conversion rules.

If all downward conversions are explicit, either through assignments to typed
variables or static casts, these are unnecessary. A sequence of operations sharing
the same variables can share an expression type 7. All data are converted to
type 7 on input to the sequence of operations, and all output are in type 7
unless explicitly narrowed.

The basic operations on floating-point types are given in Table[2] The signa-
tures are given as sets of overloads as in the A&-calculus [5]. The arithmetic and
comparison operations’ types are not related through any subtype relationship;
they do not obey the contravariant-covariant rule for arrow types.

The up conversions are natural operations in a subtyping system with over-
loading. However, it must be noted that these are full conversions and not
simple substitutions of a subtype for a supertype. The up conversion is inserted
whenever a variable with known type is used within an expression. It serves to
introduce a type constraint that bounds the expression type 7 from below.



Category Signature Examples

Binary {r =7 —> 7|7 €Prec} addition, division, etc.
Arithmetic

Unary {r = 7| 7 € Prec} negation, square root
Arithmetic

Comparison {7 — 7 — bool | 7 € Prec}  &reater than or unordered,
equals, less than, etc.

Up {r — a|7,a€Prec, 7 < a} 1ntroduct10n. nto an
Conversion expression
Decimal {decimal — o | a € Prec} 1ntroduct10n. into an
Introduction expression
Down {oo— 7| 7,0 € Prec, « < 7} narrowing assignment,
Conversion explicit casts

Table 2: Floating-point operator types, where Prec is the set of floating-point
types.

c =5/9 % (f - 32) = c=1int(5/9) * (f — 32)
= ¢ =int(0) * (f — 32)
=c=0.0

Figure 3: Treating decimal strings as integers creates surprises.

3.2 Decimal Literals and Integers

When introducing decimals, both decimal floating-point literals and values of
integral types, they must be converted to the expression type. Algorithms exist
to convert decimal floating-point strings to properly rounded binary floating-
point values of any precision [7], so literals can be converted to the expression
precision. Because not every decimal floating-point value can be converted to
a finite-precision binary value, the desired binary floating-point precision must
be set before conversion. Thus, these conversions cannot impose lower bounds
on the binary precisions in general.

Integral types are often provided in 32- and 64-bit varieties. Thirty-two
bit integers can be converted to double-precision floats with no information
loss. Sixty-four bit integers require at least the extended precision implemented
by Intel and Motorola. Language systems may wish to introduce lower-bound
constraints on 7 when 32-bit integers are encountered. Because only a few
platforms support precisions higher than double, cross-platform languages may
require explicit conversions of 64-bit quantities to floating-point.

Also, the discussion so far assumes all arithmetic is carried out in floating-
point. Mixing integers and floating-point in expressions can have surprising
effects like the one shown in Figure [3] To avoid this, languages like Objective



CaAML [24] denote floating-point operators differently than integer operators.
Other languages, like Standard ML [25], require explicit casts to move between
integral and floating-point types.

If integral types possess fundamentally different semantics than floating-
point types, as when arithmetic wraps around, these are reasonable choices.
Alternately, if a language gives integral types semantics defined similarly to
floating-point, converting integers to wide enough floats for type checking would
avoid the problem in Figure|3] Purely integral expressions can be converted back
during code generation, although some floating-point instructions may run more
quickly than the equivalent integer instructions on current processors.

3.3 Inferring the Expression Type

General type inference under subtyping is undecidable [4, 26]. In the limited
system of precisions introduced, however, inference is quite simple. There is only
a single type to infer for all expressions involving the same programmer-typed
variables. Moreover, each typed variable introduced into an expression provides
a simple lower bound, so the least upper bound can be found by simply scanning
the leaves of the typing proof. The only difference between widest-needed and
widest-feasible disciplines is that widest-feasible begins with a single constraint
of 7 > 7y, where 7y is the widest fast type, and widest-need begins with a single
constraint 7 > 7, , where 7, is the narrowest typeﬂ

A compiler or language that requires type annotations for every variable
need only carry out inference within single line expressions. A simple imple-
mentation can insert a type tag, here called tempfloat, denoting an unknown
type into components of an expression tree and accumulate lower bounds from
the input data. Once the tree is completed, another pass downwards fills in the
intermediate types. An implementation within a past FORTRAN compiler was
completed in under 80 man-hours [10].

Such a language can also introduce a limited form of type inference be-
yond single expressions. Styled after the TEMPREAL type of an Intel FORTRAN
compiler [I6], a language can introduce an intermediate type, perhaps called
tempfloat, the same as the tag used above. Variables annotated with that
type can have their types inferred. If the tempfloat type is restricted to func-
tion bodies and not their interfaces, no support for general polymorphism is
required. Current simple languages could be easily extended with this type. A
compiler front-end could infer a lower bound during its pass and write it into a
block or function description. A back-end can then use the information in the
description to type all tempfloat-annotated operations.

3Without the initial constraint in widest-need, a compiler would not be able to infer types
on unused variables.
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4 Implementation Considerations

The type system above serves to annotate input to a compiler or a dynamic
environment. Compilers can find optimizations to make conversions less expen-
sive. Further, dynamic environments can find optimizations using the widest
feasible or needed typings that would be must less profitable with strict eval-
uation. Implementations on most architectures are also vulnerable to double
roundings.

4.1 Compiler Use of the Types

Annotating the expressions and operations with types as described is one step
in compiling reliable floating-point software. A compiler must also generate fast
code obeying those type annotations. This requires examining the expressions
serving as expression input during code generation.

For example, if an operation has inputs converted from single-precision bi-
nary data and is immediately stored into a single-precision result, a compiler
should narrow the type of the operation and eliminate conversions. This does
not necessarily apply when inputs are converted from decimal literals; results
could differ if, say, 0.1 were converted to a narrower precision than otherwise
inferred.

4.2 Benefits in Dynamic Environments

The wider evaluation disciplines offer substantial benefits in dynamic environ-
ments. The type of all expressions can be derived upon entry into a routine.
Relevant methods and functions need only be looked up once rather than on
every invocation. This is true in general, but the fact that there is only one
evaluation type makes this practical in every situation.

Compilers for these environments can also benefit. Each routine can be bro-
ken into three phases: input conversion, computation, and output conversion.
With a widest-feasible evaluation strategy, the vast majority of cases can share
a single computation phase, reducing memory overhead and compilation time,
both critical resources for dynamic compilers. Also, the common supertype
selection routines in the input conversion can be compiled once for all floating-
point types. The conversions themselves still require a dynamic dispatch, but
the total overhead is still reduced drastically. Automatic inlining and polymor-
phism benefit in similar ways.

4.3 Double Rounding

There is a more subtle issue lurking in the wider evaluation schemes. Computing
and rounding a result to one precision and then rounding again to a narrower
precision could produce a result different than if the result were initially rounded
to the narrower precision. This phenomenon is called either double rounding or
step error [23].
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Figure 4: Floating-point type hierarchy with intervals and further precisions

A compiler should emit an operation followed immediately by a conversion as
a single operation, and an interpreter should behave similarly. To the author’s
knowledge, only the IA-32 and IA-64 architectures offer the ability to round an
operation to a selected precision. All other architectures will require either two
steps or software emulation. If any of these architectures provide the direction
of the previous rounding, the correct result can be obtained in two steps [23].
Otherwise, rounding correctly when storing to a narrower precision requires
software emulation of the operation.

The effects of double rounding are mitigated by carrying intermediate com-
putations with higher precision. One could argue that if any reasonable number
of operations occur, the effects of double rounding are negligible. Effects of step
error are most apparent when the double rounding is frequent, as with doubled
double types. They must be much less apparent when double rounding is infre-
quent, as many compilers use the Kernighan and Ritchie evaluation semantics
outlined in Section [3] without instructions that can narrow their outputs. This
is only an argument, however, and not a proof.

5 Extensions

The type system presented in Section [3] includes only the most common in-
stances of real-valued floating-point numbers. People also want to compute
with complex numbers, and with intervals and higher precisions. The latter fit
cleanly into the type system, but the complex numbers do not and should not.

5.1 Complex Arithmetic

In each precision, there is precisely one complex floating-point number associ-
ated with each real floating-point number. This suggests a subtyping relation-
ship with the possibility of a most-complex expression evaluation discipline.

However, unlike the case with precisions, there is no reasonable way to cast
a general complex number to a single real number. Casting to a lower precision
introduces only a rounding error. Casting a complex number to a single real
number loses an entire component, introducing possibly unbounded error.

Not only is there no sensible way to cast from complex to real, there is no
sensible way to cast all real values to complex values. Consider the real floating-
point values +o00. The correct conversion of an infinity into complex arithmetic

12



depends on the topology desired. A projective map, the most sensible for many
complex analyses, maps the reals onto a circumference of a sphere, and so maps
both infinities to one point. The affine map used with floating-point complex
arithmetics instead has numerous infinities, and picking an appropriate one
depends on the direction one intends to express [18§].

A programming language supporting complex arithmetic also requires types
representing imaginary numbers [20]. The imaginary number types are subtypes
of the complex types. Square root, a basic IEEE754 arithmetic function, would
need to map some reals to imaginaries and some to reals, so a single square root
operator would require a complex return type. This would effectively promote
many computations into the complex domain.

For these reasons and others not outlined above, complex floating-point num-
bers should be treated as a type separate from real floating-point numbers. Con-
versions between the two types should be explicit, even in dynamically typed
environments. Individual operations need to dynamically cast complex numbers
downwards on input to avoid such nonsensical results as (co+01)? = oo+ NaN1,
but the result should always be typed as a complex number.

5.2 Interval Arithmetic

Interval arithmetic replaces single floating-point numbers with pairs represent-
ing intervals [6]. The idea is to capture exact numbers with small intervals. For
example, 1/3 € [0.333,0.334], so that interval would be used to represent 1/3 in
three decimal digit floating-point. Arithmetic operations on intervals produce
intervals the result of operating exactly on every number in the input intervals.
The resulting interval must be the tightest interval possible.

Because intervals must be tight, each single-precision number corresponds
to exactly one interval with single-precision endpoints. Likewise, each double
corresponds to one double interval, and so on. The non-interval floating-point
hierarchy induces a hierarchy between intervals as well, filling in the bottom of
Figure [4

Interval types fit into the floating-point type framework cleanly. The sub-
type relationship in Figure [4] provides common supertypes for widest-need and
widest-feasible evaluation strategies. It’s fair to wonder if a common supertype
is necessary, or if the simple floating-point types should be downgraded to an
interval of a less precise type.

As an example of why that would produce poor results, consider the sum
of double values into a single-precision interval by converting the double values
into single-precision intervals. Any double less than 2726 but at least 27149,
the boundary between normalized and denormalized singles, will be converted
to an interval spanning two denormalized single values. This loses as much
precision as simply converting the double to a single, and it also incurs an
unfair performance penalty on architectures that treat denormalized numbers
as aberrations. And any double value less than 27149 must be treated as the
interval [+0,27149]. This loses a substantial amount of information, more than
even rounding the double to a single.
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Similar difficulties occur at the upper limit of the single-precision represen-
tation. Any doubles that occur at or beyond 2'28 will be treated as an interval
~ [3.4x 1038, +00]. Once an infinity occurs in an interval summation, it does not
leave, and all upper-bound information is effectively lost. If these values seem
too extreme to occur in practice, consider a taking the norm of a vector. Then
the summation is of squares of numbers, so the effective range of the routine is
reduced to the square root of these bounds.

The philosophy of storing ‘end’ results in the narrowest precision reasonable
encourages collapsing intervals into corresponding simple floating-point types.
This requires diligence in interval calculations, as the interval may span many,
one, or none of the values in the destination format. If the interval is to be
converted to a single number and error bounds, the error bounds must be stored
the same simple precision as the interval’s bounds. That precision is enough to
give the exact distance of the single, narrower value to each interval end point.

Because they encompass consecutive round-off errors, intervals tend to grow
quickly. Computations can be restructured to reduce the growth, but intervals
can still be useful to common cases. Collapsing intervals to single numbers and
examining the error bounds at controlled points in a program makes interval
arithmetic useful. So in the interval case, narrowing results and deciding how
much to trust them is already a good idea.

Strict evaluation saps the strengths of interval arithmetic. Consider again
the sum of squares of single-precision values into an interval accumulator. Each
squaring will be followed by rounding the result back into single-precision. The
error in rounding is lost, and the interval accumulator no longer bounds the
true error.

5.3 Higher Precisions

Intervals are diagnostic. They can inform a user that a routine has potentially
committed an intolerable numerical error, but intervals alone provide no method
for computing an accurate answer. A standard technique requires increasing the
precision and exponents in finite increments until the error is tolerable for the
result’s intended use.

Both the higher, fixed precisions and their intervals can fit into the type
scheme presented here so long as the precisions nest. If those precisions extend
the recommendations of IEEE854 [14], they will nest automatically. Figure
includes one such precision.

The types so defined are parameterized by the number of bits in their sig-
nificand and exponent. Until these types are standardizecﬂ programmers will
need to annotate these types by providing minimums necessary for each field. A
given nested set of precisions will have a unique minimal type that satisfies the
requirements. This selection is also in line with the wider evaluation disciplines.

The method for inferring types given in Section [3.3] can work for an un-
bounded number of fixed types. The optimizations outlined in Section [.2] can

4Standardization beyond quad precision is not in the foreseeable future.
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enhance the method of dynamically increasing precisions. In this situation, it
is important to convert decimal literals at run time. If only one input is made
more precise, widest-needed evaluation ensures that the computation proceeds
in the intended manner.

Automatically extensible precisions are available in many varieties, but each
must be truncated to some precision for division and square root operations. If
such a precision is to be encoded as a type in this system, either that length
must be larger than the largest fixed precision provided, or else the extensible
precision is not a supertype to all the precisions and intervals. Most extensible
precision implementations allow for the length to be changed dynamically, and
the implied subtyping relation cannot be determined statically for those imple-
mentations. Because extensible precisions behave substantially differently than
fixed precisions, relating them in the same type system is of dubious value.

6 Conclusions

Repeating the rules of thumb from the introduction:
e Store data in the narrowest representation reasonable,
e compute intermediate results in the widest representation feasible, and

e maintain relationships between important properties through wider preci-
sions.

The rules of thumb help simple computations remain simple, efficient, and reli-
able.

We have seen how the a typing system based on widest feasible or needed
evaluation works with these rules of thumb. The type system supports widest-
feasible and widest-needed evaluation disciplines by automatically widening val-
ues within expressions and by requiring thoughtful casts back to narrow preci-
sions. Similarly, the system extends naturally to interval arithmetic and higher
precisions, while intervals require widening evaluation to maintain their prop-
erties.

While there are some implementation issues, notably the occurrence of dou-
ble rounding on most architectures, the inference algorithm provides a clean
implementation to multiple-stage compilers. Also, the type system, along with
widest-feasible evaluation, opens up many optimizations to dynamically dis-
patched environments and interpreters.

7 Future Directions

The impact of widest-need and widest-feasible evaluations on testing cannot
be neglected in a real system. As outlined in Section [2] both schemes can
make artificial singularities more difficult to detect. This is to be expected;
as things get better, flaws are more difficult to find. However, widest-feasible
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evaluation’s platform dependence can make the singularities depend not only
on the algorithm but also on the platform.

This problem unavoidable to some extent. As platforms begin to support
fast arithmetic in quad precision, users will want to use it. Compilers that
can provide the benefits without much effort are likely to be used more than
those that require explicit casts and re-typing of variables. Characterizing how
common sources of floating-point singularities behave as precision and exponent
ranges increase would benefit designers of test cases. Characterizing when these
rules of thumb fail would also be of use.

Ways to bring the benefits of extended precisions to array and vector com-
putations are also necessary. There is some work on using extended precision
within single matrix computations [8], but then all matrix temporaries are stored
in the narrower precision. Pushing matrix and vector expressions to the element
level not only helps performance [28] but also may help bring the benefits of
wider temporaries to some matrix computations.

Also of interest is an analysis of the trade-offs between the speed of com-
putation in vector registers with lower precision against the speed of simpler
algorithms that use higher precision. For example, Intel’s SSE2 [15] vector reg-
isters can hold four single-precision or two double-precision values in one vector
register. With eight of those registers available, the fastest way to compute
an inner product accurately may be to use a more complex summation algo-
rithm [12] rather than the eight double-extended scalar registers.

The inevitability of double rounding with wider evaluation schemes warrants
an investigation of step error’s impact on common computations. Experience
with existing systems makes this appear negligible, but it would be appropriate
to quantify the errors involved.
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