
Parallel Weighted Bipartite Matching and
Applications

E. Jason Riedy
Dr. James Demmel

SIAM Parallel Processing for Scientific Computing 2004

The problem: Maximum weight bipartite matching

Auction algorithms

Parallel auctions

Sequential improvement (was parallel performance)

Observations and the future

Max. Weight Bipartite Matching

Given:

a bipartite graph G = (R, C; E) with
weights b(i , j) for (i , j) ∈ E .

Find:

a maximum cardinality matching M
of greatest total weight

∑
(i ,j)∈M b(i , j).

I Simple enough to be understood.

I Just hard enough to be interesting.

I Has actual applications. . .

Applications

I Most-likely matches between noisily-ordered strings
I Think genes or code sequences

I Finding the most profitable connections
I Person willing to spend $x on flight A or $y on B

I Permuting large entries to the diagonal of a sparse matrix
I Avoid dynamic pivoting during sparse LU factorization

Driving app: Distributed SuperLU.
Goals: Distributed memory first, absolute performance second.

Linear Optimization Problem

B: the benefit matrix from b(i , j), and
1c , 1r : unit-entry vectors indexed by R and C
Solve for a permutation matrix X (matching M):

max
X

Tr BTX

subject to X1c = 1r , (one entry per row)

XT1r = 1c , (one entry per col)

X ≥ 0.

I Also known as the linear assignment problem.

I If (i , j) 6∈ E , b(i , j) = −∞; problem always feasible.

I Only gives perfect matchings. . .

. . . and Its Dual Problem

max
X

Tr BTX

subject to X1c = 1r ,

XT1r = 1c ,

X ≥ 0.

min
p,π

1T
r π + 1T

c p

subject to 1rp
T + π1T

c ≥ B.

I p(j) is a price for a column j , π(i) is row i ’s profit
I Implicitly define π(i) = maxj b(i , j)− p(j)

. . . and Its Dual Problem

max
X

Tr BTX

subject to X1c = 1r ,

XT1r = 1c ,

X ≥ 0.

min
p,π

1T
r π + 1T

c p

subject to 1rp
T + π1T

c ≥ B.

Perfect matching X is maximum weight if there are feasible dual
variables and complementary slackness holds:

x(i , j) = 1 ⇒ π(i) + p(j) = b(i , j)

X � (π1T
c + 1rp

T − B) = 0

Standard Problem, Standard Solver?

Why not use a standard optimization solver?

Standard-form problem:

min
x

cT x

s.t. Ax = 1r+c , and

x ≥ 0.

x = vectX ,

c = − vect B,

A =

(
1T
c ⊗ In

In ⊗ 1T
r

)

I Lost problem instance’s structure.

I A is big and sparse, so dual matrix is big and dense.

I (Pre-processing for sparse LU by solving bigger, denser
systems?)

Recap

Given a sparse matrix B, find a permutation X that maximizes
Tr BTX .

Want a distributed memory matcher.

I Linear optimization problem with small variables
I n − 1 degrees of freedom for X , n entries for p

I Need to solve primal and dual!

I Focus on sparse, square problems.

Which Algorithm?

Combine processors’ matchings via an auction. (Bertsekas, 1987)

What isn’t in an auction algorithm?

I No explicit augmenting paths, no paths crossing memory
boundaries.

I (classical flow-based methods, MC64 (Duff & Koster))

I No linear solves.
I (“Best” PRAM algorithms (Goldberg, at al. 1991),

graph-based preconditioners (Korimort, et al. 2000))

I No reduction to a slightly different problem.
I (circulations via push-relabel (Goldberg and Tarjan, 1986))

I No dense updates.
I (Hungarian algorithm (Kuhn, Munkres, 1957))

Auction Algorithms

Basic algorithm:
1. An unmatched row i finds a “most

profitable” column j
I π(i) = maxj b(i , j)− p(i)

2. Row i places a bid for column j .
I Bid price raised until j is no longer the best

choice. (Min. increment µ)

3. Highest bid gets the matching (i , j).

I Any interleaving will do; bids continued until all rows matched.

I Perfect match exists ⇒ a-priori bound on highest price.

Minimum Increments and Barrier Methods

Consider a pair of rows bidding for a pair of equally valuable
columns.

Require a minimum bid increment µ.

1. Row 1 bids for item 1 with no price increment.

2. Row 2 bids for 1 with no increment, bumping Row 1.

3. Row 1 bids for 1 with no increment, bumping Row 2.

4. . . .

Minimum Increments and Barrier Methods

Consider a pair of rows bidding for a pair of equally valuable
columns. Require a minimum bid increment µ.

1. Row 1 bids for item 1 with increment µ.

2. Row 2 sees higher price, bids for item 2 with increment µ.

3. Done.

Solving a Relaxed Matching Problem

Edge (i , j) is in matching only when

π(i) + (p(j)− µ) = b(i , j).

Equivalently,

X �
(
π1T

c + 1r (p − µ1c)
T

)
= 0,

or
X �

(
π1T

c + 1rp
T

)
= µ1r1

T
c .

Solving a Relaxed Matching Problem

New CS condition

X �
(
π1T

c + 1rp
T

)
= µ1r1

T
c

is for a barrier formulation of matching:

max
X

Tr BTX + µTr(1r1
T
c)T [log X]

s.t. X1c = 1r , and XT1r = 1c .

Within (n − 1)µ of optimal value. Solve sequence of problems
with shrinking µ.

Basic Auction Algorithm Properties

Properties to guide parallelization:

I Bids can be entered and resolved with any interleaving.
I (Also a drawback for debugging.)

I Placing bid requires whole row.

Generally useful properties:

I Fast. (40k × 40k, 1.7M entries in 5 sec. on 1.3 GHz Itanium2)

I Works for floating-point values.
I Abs. error ≈ twice the worst error of evaluating primal or dual

I Works for integer values using standard double precision
prices.

Parallelization by Distributed Bidding

I Each processor runs some local matching; prices increase.

I Local winners treated as remote bids.

I Collective “string-merge” communication.
I Merging requires reindexing and comparisons; non-trivial.

Basic Parallel Loop

Run for each µ value:

Match Merge

Bids: Changed prices and matches Remote winners

No more changes...

Basic Parallel Performance. . .

Performed “well”:

I Moderate speed-ups
I Around 5 for many problems (lhr family) across 5-30 procs.

I Logarithmic slow-downs
I Trivial matching works, still need all-to-all comm.

I (Previous drastic speed-ups were bugs.)

Most parallelism, most work in first pass over all rows for each µ.

Destroying Basic Parallel Performance

Traditionally:

I Each µ-phase begins with an empty matching.

Better:

I Each µ-phase begins with a matching satisfying its CS
condition.

Requires one pass through the matrix. Reduces initial matching by
factor 2-10. Reduces sequential time by at least factor of 1.5,

often > 3.

Modelled New Parallel Performance

Break auction into chunks, but run and merge each chunk locally.
Assumptions:

I Longest “compute” time is longest chunk time.
I Assume synchronized starts and no overlap of comm.

I Reduction time is (bytes sent / bandwidth + latency) × log n.

Optimistic on computation, moderately pessimistic on
communication.

Modelled New Parallel Performance

1.3 GHz Itanium 2, assume gigabit rates and microsecond latency.

1

2

3

4

5

6

7

8

9

10

11

0 10 20 30 40 50 60 70

Observations, Future Work

Kill parallel performance by improving sequential performance.

I Need to overlap computation, communication.
I Multi-level parallelism: One proc. works on merging while

others match.

I Need better way to shrink µ.

I Estimate the tail path, migrate to one node.

I Is there an O(|E |) algorithm?
I Can verify a primal and dual in O(|E |) . . .

	Outline
	The problem: Maximum weight bipartite matching
	Auction algorithms
	Parallel auctions
	Sequential improvement (was parallel performance)
	Observations and the future

