Note: These are my approaches to these problems. There are many ways to tackle each.
| 60 | 61 | 62 | 63 | 64 | 65 |
| 70 | 71 | 72 | 73 | 74 | 75 |
| {2}^{0} = | 1 |
| {2}^{1} = | 2 |
| {2}^{2} = | 4 |
| {2}^{3} = | 8 |
| {2}^{4} = | 16 |
| {2}^{5} = | 32 |
| {2}^{6} = | 64 |
| {2}^{7} = | 128 |
| {2}^{8} = | 256 |
| {2}^{9} = | 512 |
| {2}^{10} = | 1024 |
| 0 = | {0}_{2} = | 0000{0}_{2} |
| 1 = | {1}_{2} = | 0000{1}_{2} |
| 2 = | 1{0}_{2} = | 0001{0}_{2} |
| 3 = | 1{1}_{2} = | 0001{1}_{2} |
| 4 = | 10{0}_{2} = | 0010{0}_{2} |
| 5 = | 10{1}_{2} = | 0010{1}_{2} |
| 6 = | 11{0}_{2} = | 0011{0}_{2} |
| 7 = | 11{1}_{2} = | 0011{1}_{2} |
| 8 = | 100{0}_{2} = | 0100{0}_{2} |
| 9 = | 100{1}_{2} = | 0100{1}_{2} |
| 10 = | 101{0}_{2} = | 0101{0}_{2} |
| 11 = | 101{1}_{2} = | 0101{1}_{2} |
| 12 = | 110{0}_{2} = | 0110{0}_{2} |
| 13 = | 110{1}_{2} = | 0110{1}_{2} |
| 14 = | 111{0}_{2} = | 0111{0}_{2} |
| 15 = | 111{1}_{2} = | 0111{1}_{2} |
| 16 = | 1000{0}_{2} = | 1000{0}_{2} |
| 17 = | 1000{1}_{2} = | 1000{1}_{2} |
| 18 = | 1001{0}_{2} = | 1001{0}_{2} |
| 19 = | 1001{1}_{2} = | 1001{1}_{2} |
| 20 = | 1010{0}_{2} = | 1010{0}_{2} |
| 21 = | 1010{1}_{2} = | 1010{1}_{2} |
| 22 = | 1011{0}_{2} = | 1011{0}_{2} |
| 23 = | 1011{1}_{2} = | 1011{1}_{2} |
| 24 = | 1100{0}_{2} = | 1100{0}_{2} |
| 25 = | 1100{1}_{2} = | 1100{1}_{2} |
| 26 = | 1101{0}_{2} = | 1101{0}_{2} |
| 27 = | 1101{1}_{2} = | 1101{1}_{2} |
| 28 = | 1110{0}_{2} = | 1110{0}_{2} |
| 29 = | 1110{1}_{2} = | 1110{1}_{2} |
| 30 = | 1111{0}_{2} = | 1111{0}_{2} |
| 31 = | 1111{1}_{2} = | 1111{1}_{2} |
One of the more important patterns to see is how the digits repeat once padded to the left by zeros. The units (or right-most) digit alternates 0,1,0,1,\mathop{\mathop{…}}. The next alternates in pairs, 0,0,1,1,0,0,1,1,\mathop{\mathop{…}}. The next in groups of four, the next in groups of eight, and so forth.
(A) = {2}^{|A|}
for any set A.
| + | 0 | 1 | 2 | 3 |
| 0 | 0 | 1 | 2 | 3 |
| 1 | 1 | 2 | 3 | 0 |
| 2 | 2 | 3 | 0 | 1 |
| 3 | 3 | 0 | 1 | 2 |
| 3 | 7 | 4 | ||
| 0 | 0/6 | 1/4 | 0/8 | 2 |
| 8 | 0/3 | 0/7 | 0/4 | 1 |
| 0 | 1/5 | 3/5 | 2/0 | 5 |
| 4 | 1 | 0 |
So 374 ⋅ 215 = 80410.
| bit of 17 | doubling of 71 | accumulator |
| 0 | ||
| 0 | 71 | 0 |
| 0 | 142 | 0 |
| 0 | 284 | 0 |
| 1 | 568 | 568 |
| 1 | 1136 | 1704 |
So 71 ⋅ 24 = 1704.
| Problem | Actual answer | Calculator’s answer |
| 8 × 3 | 24 | 34 |
| 9 × 5 | 45 | 55 |
| 4 × 2 | 8 | 18 |
| 8 × 4 | 32 | 42 |
| a × b | x - 10 | x |
| 9 × 6 | 64 - 10 = 54 | 64 |
When the decimal logic was done outside a chip (the early 80s), this type of failure could happen from a simple short-circuit. Now it’s highly doubtful; a failure like this would require massive trauma to the chip, leading to general failure.